Mở cửa dòng thác xâm lấn—mô hình động lực phân bố của các loài cá ngoại lai xâm lấn ở Ấn Độ

Springer Science and Business Media LLC - Tập 195 - Trang 1-21 - 2023
M. Nobinraja1,2, N. A. Aravind1,3, G. Ravikanth1
1SM Sehgal Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bengaluru, India
2Manipal Academy of Higher Education (MAHE), Manipal, India
3Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India

Tóm tắt

Các loài ngoại lai xâm lấn đã trở thành mối đe dọa lớn thứ hai đối với đa dạng sinh học, ảnh hưởng đến cả ba hệ sinh thái chính (trên cạn, biển và nước ngọt). Sự gia tăng các yếu tố như phá hủy môi trường sống, sự mở rộng ngành nông nghiệp và nuôi trồng thủy sản, cũng như thương mại thú cưng và thực phẩm toàn cầu đã tạo ra các con đường cho các loài ngoại lai được xâm nhập, dẫn đến những tác động nghiêm trọng lên các hệ sinh thái tiếp nhận. Mặc dù hệ sinh thái nước ngọt ít được nghiên cứu hơn so với các hệ sinh thái trên cạn, nhưng chúng lại dễ bị xâm lấn sinh học. Tại Ấn Độ, đã có sự gia tăng đáng kể trong việc giới thiệu các loài cá ngoại lai vào môi trường nước ngọt. Trong nghiên cứu hiện tại, chúng tôi nhằm mục đích hiểu cách biến đổi khí hậu có thể ảnh hưởng đến động lực của sự xâm lấn sinh học đối với các loài cá ngoại lai xâm lấn ở Ấn Độ. Chúng tôi cũng đánh giá tác động của dự án liên kết sông ngòi đến sự đồng hóa của sinh vật trong các nguồn nước ngọt ở Ấn Độ. Chúng tôi đã sử dụng các hồ sơ xảy ra của loài cùng với các yếu tố môi trường được chọn để đánh giá các vị trí dễ bị tổn thương đối với sự xâm lấn sinh học hiện tại và trong tương lai bằng cách sử dụng mô hình phân bố loài. Nghiên cứu của chúng tôi đã xác định và lập bản đồ các vùng dễ bị xâm lấn tại Ấn Độ. Nghiên cứu của chúng tôi cho thấy rằng việc liên kết các con sông kết nối các vùng dễ bị tổn thương chứa các loài cá nguy cấp với các điểm nóng xâm lấn. Các loài cá ngoại lai xâm lấn từ lưu vực nguồn có thể xâm nhập vào các lưu vực dễ bị tổn thương và cạnh tranh với các loài bản địa. Dựa trên các kết quả, chúng tôi thảo luận một số lĩnh vực chính cho việc quản lý những loài ngoại lai xâm lấn này trong các hệ sinh thái nước ngọt.

Từ khóa

#cá ngoại lai #xâm lấn sinh học #môi trường nước ngọt #Ấn Độ #biến đổi khí hậu #phân bố loài

Tài liệu tham khảo

Ahmadi, M., Hemami, M. R., Kaboli, M., & Shabani, F. (2023). MaxEnt brings comparable results when the input data are being completed; model parameterization of four species distribution models. Ecology and Evolution, 13(2), 9827. https://doi.org/10.1002/ece3.9827 Allen, D. J., Molur, S., & Daniel, B. A. (2010). The status and distribution of freshwater biodiversity in the Eastern Himalaya. In Cambridge, UK and Gland, Switzerland: IUCN, and Coimbatore. Zoo Outreach Organisation. Anguebes-Franseschi, F., Bassam, A., Abatal, M., May Tzuc, O., Aguilar-Ucán, C., Wakida-Kusunoki, A. T., Diaz-Mendez, S. E., & San Pedro, L. C. (2019). Physical and chemical properties of biodiesel obtained from amazon sailfin catfish (Pterygoplichthys pardalis) biomass oil. Journal of Chemistry, 12, 2019. https://doi.org/10.1155/2019/7829630 Aravind, N. A., Maanya, U., Poorna, B. H. N., Bipin, C., Uma Shaanker, R., Manzoor, A. S., & Ravikanth, G. (2022). Niche shift in Invasive species: Is it a case of “home away from home” or finding a “new home”? Biodiversity and Conservation, 31, 2625–2638. https://doi.org/10.1007/s10531-022-02447-0 Bajer, P. G., Ghosal, R., Maselko, M., Smanski, M. J., Lechelt, J. D., Hansen, G., & Kornis, M. S. (2019). Biological control of invasive fish and aquatic invertebrates: A brief review with case studies. Management of Biological Invasions, 10(2), 227–254. https://doi.org/10.3391/mbi.2019.10.2.02 Banerjee, A. K., Khuroo, A. A., & Dehnen-Schmutz, K. (2021). An integrated policy framework and plan of action to prevent and control plant invasions in India. Environmental Science & Policy, 124, 64–72. https://doi.org/10.1016/j.envsci.2021.06.003 Bang, A., Cuthbert, R. N., Haubrock, P. J., Fernandez, R. D., Moodley, D., Diagne, C., Turbelin, A. J., Renault, D., Dalu, T., & Courchamp, F. (2022). Massive economic costs of biological invasions despite widespread knowledge gaps: A dual setback for India. Biological Invasions, 24(7), 2017–2039. https://doi.org/10.1007/s10530-022-02780-z Battini, N., Farías, N., Giachetti, C. B., Schwindt, E., & Bortolus, A. (2019). Staying ahead of invaders: Using species distribution modeling to predict alien species’ potential niche shifts. Marine Ecology Progress Series, 612, 127–140. https://doi.org/10.3354/meps12878 Beatty, S. J., Lear, K. O., Allen, M. G., Lymbery, A. J., Tweedley, J. R., & Morgan, D. L. (2022). What factors influence fin-nipping damage by the invasive Gambusia holbrooki (Poeciliidae) on native fishes in riverine systems? Freshw. Biol, 67(2), 325–337. https://doi.org/10.1111/fwb.13843 Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10–15. https://doi.org/10.1016/j.ecoinf.2013.11.002 Bijukumar, A., Smrithy, R., Sureshkumar, U., & George, S. (2015). Invasion of South American suckermouth armoured catfishes (Pterygoplichthys spp.) (Loricariidae) in Kerala, India - A case study. Journal of Threatened Taxa, 7(3), 6987–6995. https://doi.org/10.11609/jott.1897.6987-6995 Boral, D., & Moktan, S. (2021). Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: Current and future scenarios. Ecological Processes, 10(1), 26. https://doi.org/10.1186/s13717-021-00294-5 Brinsden, M. (2020). The potential impacts of the invasive freshwater fish Gambusia affinis on the endemic freshwater mussel Echyridella menziesii. Dissertation, University of Auckland. URL: http://hdl.handle.net/2292/53274 Brooker, & Fiechter. (2020). European bison recovering, 31 species declared extinct – IUCN Red List. IUCN news Retrieved January 26, 2021, from https://www.iucn.org/news/species/202012/european-bison-recovering-31-species-declared-extinct-iucn-red-list Accessed 26 January 2021 Bushi, D., Mahato, R., Dai Nimasow, O., & Nimasow, G. (2023). MaxEnt-based prediction of the potential invasion of Lantana camara L. under climate change scenarios in Arunachal Pradesh, India. Acta Ecologica Sinica, 43(4), 674–683. https://doi.org/10.1016/j.chnaes.2022.08.004 Byeon, D. H., Jung, S., & Lee, W. H. (2018). Review of CLIMEX and MaxEnt for studying species distribution in South Korea. Journal of Asia-Pacific Biodiversity, 11(3), 325–333. https://doi.org/10.1016/j.japb.2018.06.002 Canonico, G. C., Arthington, A., McCrary, J. K., & Thieme, M. L. (2005). The effects of introduced tilapias on native biodiversity. Aquatic Conservation, 15(5), 463–483. https://doi.org/10.1002/aqc.699 Chakraborty, A., Shaw, R., & Ghosh, K. (2017). An inventory of endemic fish species in India with notes on state-wise distribution and conservation measures. International Journal of Fisheries and Aquatic Studies, 5(1), 253–264. Clavero, M., & García-Berthou, E. (2006). Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecological Applications, 16(6), 2313–2324. https://doi.org/10.1890/1051-0761(2006)016[2313:HDAIRO]2.0.CO;2 Crall, A. W., Jarnevich, C. S., Panke, B., Young, N., Renz, M., & Morisette, J. (2013). Using habitat suitability models to target invasive plant species surveys. Ecological Applications, 23(1), 60–72. https://doi.org/10.1890/12-0465.1 Da Mata, R. A., Tidon, R., Côrtes, L. G., De Marco, P., & Diniz-Filho, J. A. F. (2010). Invasive and flexible: Niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biological Invasions, 12, 1231–1241. https://doi.org/10.1007/s10530-009-9542-0 Daga, V. S., Azevedo-Santos, V. M., Pelicice, F. M., Fearnside, P. M., Perbiche-Neves, G., Paschoal, L. R. P., Cavallari, D. C., Erickson, J., Ruocco, A. M. C., Oliveira, I., Padial, A. A., & Vitule, J. R. S. (2020). Water diversion in Brazil threatens biodiversity. Ambio, 49, 165–172. https://doi.org/10.1007/s13280-019-01189-8 Daniel, B. A., Darwall, W.R.T., Molur, S., & Smith, K. G. (2011). The status and distribution of freshwater biodiversity in the Western Ghats, India. Cambridge, UK and Gland, Switzerland: IUCN. Das, A., Ghosh, P. K., Choudhury, B. U., Patel, D. P., Munda, G. C., Ngachan, S. V., & Chowdhury, P. (2009). Climate change in North East India: Recent facts and events–worry for agricultural management. In Proceedings of the workshop on impact of climate change on agriculture, 2009, 32–37. Dash, S. K., Sharma, N., Pattnayak, K. C., Gao, X. J., & Shi, Y. (2012). Temperature and precipitation changes in the north-east India and their future projections. Global and Planetary Change, 98, 31–44. https://doi.org/10.1016/j.gloplacha.2012.07.006 Davies, B. R., Thoms, M., & Meador, M. (1992). An assessment of the ecological impacts of inter-basin water transfers, and their threats to river basin integrity and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2(4), 325–349. https://doi.org/10.1002/aqc.3270020404 Devi, R. K., Indra, T. J., Yadav, B. E., Raghunathan, M. B., Krishnana, S., & Jadhav, S. S. (2013). Zoological Survey of India. Fauna of Sikkim, State Fauna Series, 21, 239–276. DiBattista, J. D., West, K. M., Hay, A. C., Hughes, J. M., Fowler, A. M., & McGrouther, M. A. (2021). Community-based citizen science projects can support the distributional monitoring of fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(12), 3580–3593. https://doi.org/10.1002/aqc.3726. https://www.inaturalist.org/observations/export. Accessed 20 July 2020. Döll, P., & Bunn, S. E. (2014). The impact of climate change on freshwater ecosystems due to altered river flow regimes. Climatic Change, 143-146. https://doi.org/10.5194/hess-14-783-2010 Dueñas, M. A., Hemming, D. J., Roberts, A., & Diaz-Soltero, H. (2021). The threat of invasive species to IUCN-listed critically endangered species: A systematic review. Global Ecology and Conservation, 26, e01476. https://doi.org/10.1016/j.gecco.2021.e01476 Elfidasari, D., Puspitasari, R. L., Sugoro, I., & Shabira, A. Qoyyimah, F. D. (2019a). The potential of Pterygoplichthys pardalis from Ciliwung river as the alternative source of protein, 1-5. URL: http://eprints.uai.ac.id/id/eprint/1486 Elfidasari, D., Shabira, A. P., Sugoro, I., & Ismi, L. N. (2019b). The nutrient content of Plecostomus (Pterygoplichthys pardalis) flesh from Ciliwung River Jakarta, Indonesia. Nusantara Bioscience, 11(1), 30–34. https://doi.org/10.13057/nusbiosci/n110106 Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x Elith, J., Graham, C. P., Anderson, R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC, J., Townsend Peterson, O. A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x Emiroğlu, Ö., Aksu, S., Başkurt, S., Robert Britton, J., & Tarkan, A. S. (2023). Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions, 25, 1907–1920. https://doi.org/10.1007/s10530-023-03016-4 Fenoglio, S., Bonada, N., Guareschi, S., & Lopez – Rodriquez M. J., Millan, A., & Tierno de Figueroa J. M. (2016). Freshwater ecosystems and aquatic insects: A paradox in biological invasions. Biology Letters, 12(4), 20151075. https://doi.org/10.1098/rsbl.2015.1075 Ficetola, G. F., Thuiller, W., & Miaud, C. (2007). Prediction and validation of the potential global distribution of a problematic alien invasive species—The American bullfrog. Diversity and Distributions, 13(4), 476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x Froese, R., & Pauly, D. (2012). FishBase. World wide web electronic publication. Version (10/2012). www.fishbase.org. Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models–How violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x Gaul, W., Sadykova, D., White, H. J., Leon-Sanchez, L., Caplat, P., Emmerson, M. C., & Yearsley, J. M. (2020). Data quantity is more important than its spatial bias for predictive species distribution modelling. PeerJ, 8, e10411. https://doi.org/10.7717/peerj.10411 GBIF 2020 (http://www.gbif.org) (accessed on 20th July 2020) The Global Biodiversity Information Facility: GBIF backbone taxonomy. Accessed via (http://www.gbif.org accessed on 20th July 2020). Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology and Evolution, 29(5), 260–269. https://doi.org/10.1016/j.tree.2014.02.009 Guo, C., Chen, Y., Gozlan, R. E., Liu, H., Lu, Y., Qu, X., Xia, W., Xiong, F., Xie, S., & Wang, L. (2020). Patterns of fish communities and water quality in impounded lakes of China’s south-to-north water diversion project. Science of The Total Environment, 713, 136515. https://doi.org/10.1016/j.scitotenv.2020.136515 Heshmati, I., Khorasani, N., Shams-Esfandabad, B., & Riazi, B. (2019). Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: Implications for environmental monitoring and risk assessment. Environmental Monitoring and Assessment, 191(1), 1–12. https://doi.org/10.1007/s10661-018-7154-9 Hong, S., Jang, I., Kim, D., Kim, S., Park, H. S., & Lee, K. (2022). Predicting potential habitat changes of two invasive alien fish species with climate change at a regional scale. Sustainability, 14(10), 6093. https://doi.org/10.3390/su14106093 Hosni, E. M., Nasser, M., Al-Khalaf, A. A., Al-Shammery, K. A., Al-Ashaal, S., & Soliman, D. (2022). Invasion of the land of samurai: Potential spread of old-world screwworm to Japan under climate change. Diversity, 14(2), 99. https://doi.org/10.3390/d14020099 Howe, E., Howe, C., Lim, R., & Burchett, M. (1997). Impact of the introduced poeciliid Gambusia holbrooki (Girard, 1859) on the growth and reproduction of Pseudomugil signifer (Kner, 1865) in Australia. Marine and Freshwater Research, 48(5), 425–434. https://doi.org/10.1643/CH-08-101 Hulme, P. E. (2017). Climate change and biological invasions: Evidence, expectations, and response options. Biological Reviews, 92(3), 1297–1313. https://doi.org/10.1111/brv.12282 Illán, J. G., Zhu, G., Walgenbach, J. F., Acebes-Doria, A., Agnello, A. M., Alston, D. G., Andrews, H., Beers, E. H., Bergh, J. C., Bessin, R. T., Blaauw, B. R., Buntin, G. D., Burkness, E. C., Cullum, J. P., Daane, K. M., Fann, L. E., Fisher, J., Girod, P., Gut, L., & J… & Crowder D. W. (2022). Evaluating invasion risk and population dynamics of the brown marmorated stink bug across the contiguous United States. Pest Management Science, 78(11), 4929–4938. https://doi.org/10.1002/ps.7113 iNaturalist. https://www.inaturalist.org/observations/export. Accessed 20th July 2020. Jarnevich, C. S., & Young, N. (2015). Using the MAXENT program for species distribution modelling to assess invasion risk. In Pest risk modelling and mapping for invasive alien species (pp. 65–81). CABI. Jourdan, J., Riesch, R., & Cunze, S. (2021). Off to new shores: Climate niche expansion in invasive mosquitofish (Gambusia spp.). Ecology & Evolution, 11(24), 18369–18400. https://doi.org/10.1002/ece3.8427 Kannan, R., Shackleton, C. M., Krishnan, S., & Shaanker, R. U. (2016). Can local use assist in controlling invasive alien species in tropical forests? The case of Lantana camara in southern India. Forest Ecology and Management, 376, 166–173. https://doi.org/10.1016/j.foreco.2016.06.016 Kano, Y., Dudgeon, D., Nam, S., Samejima, H., Watanabe, K., Grudpan, C., Grudpan, J., Magtoon, W., Musikasinthorn, P., Nguyen, P. T., Praxaysonbath, B., Sato, T., Shibukawa, K., Shimatani, Y., Suvarnaraksha, A., Tanaka, W., Thachu, P., Tran, D. D., Yamashita, T., & Utsugi, K. (2016). Impacts of dams and global warming on fish biodiversity in the Indo-Burma hotspot. PLoS One, 11(8), e0160151. https://doi.org/10.1371/journal.pone.0160151 Khan, M. F., & Panikkar, P. (2009). Assessment of impacts of invasive fishes on the food web structure and ecosystem properties of a tropical reservoir in India. Ecological Modelling, 220(18), 2281–2290. https://doi.org/10.1016/j.ecolmodel.2009.05.020 Khan, Z. A., & Pulikkottil, S. I. (2019). Anophelinel vectors in Car Nicobar Islands-An area with negligible malaria. Indian Journal of Entomology, 81(2), 377–380. https://doi.org/10.5958/0974-8172.2019.00045.2 Khan, M. F., Panikkar, P., Salim, S. M., Leela, R. V., Sarkar, U. K., Das, B. K., & Eregoda, V. M. (2021). Modeling impacts of invasive sharp tooth African catfish (Clarias gariepinus) and Mozambique tilapia (Oreochromis mossambicus) on the ecosystem of a tropical reservoir ecosystem in India. Environmental Science and Pollution Research, 28(41), 58310–58321. https://doi.org/10.1007/s11356-021-14667-y Kim, J. Y., Atique, U., & An, K. G. (2021). Relative abundance and invasion dynamics of alien fish species linked to chemical conditions, ecosystem health, native fish assemblage, and stream order. Water, 13(2), 158. https://doi.org/10.3390/w13020158 Kim, Z., Shim, T., Koo, Y. M., Seo, D., Kim, Y., Hwang, S., & Jung, J. (2020). Predicting the impact of climate change on freshwater fish distribution by incorporating water flow rate and quality variables. Sustainability, 12(23), 10001. https://doi.org/10.3390/su122310001 Kiruba-Sankar, R., Praveenraj, J., Saravanan, K., Kumar, K. L., Haridas, H., & Biswas, U. (2021). Stakeholder perceptions and strategies for management of non-native freshwater fishes of Andaman and Nicobar Islands, India. Aquatic Ecosystem Health & Management, 24(2), 96–104. https://doi.org/10.14321/aehm.024.02.13 Kiruba-Sankar, R., Raj, J. P., Saravanan, K., Kumar, K. L., Angel, J. R. J., Velmurugan, A., & Roy, S. D. (2018). Invasive species in freshwater ecosystems–Threats to ecosystem services. In Biodiversity and climate change adaptation in tropical islands (pp. 257–296). Academy press. https://doi.org/10.1016/B978-0-12-813064-3.00009-0 Knight, J. M. (2010). Invasive ornamental fish: A potential threat to aquatic biodiversity in peninsular India. Journal of Threatened Taxa, 2(2), 700–704. https://doi.org/10.11609/JoTT.o2179.700-4 Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., et al. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366–1379. https://doi.org/10.1111/ddi.12096 Kumar, S., Graham, J., West, A. M., & Evangelista, P. H. (2014). Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture, 103, 55–62. https://doi.org/10.1016/j.compag.2014.02.007 IUCN (International Union for Conservation of Nature) (spatial data). (2021). https://www.iucnredlist.org/resources/spatialdata-download. Accessed on 17 December 2021. Lakra, W. S., Sarkar, U. K., Dubey, V. K., Sani, R., & Pandey, A. (2011). River inter linking in India: Status, issues, prospects and implications on aquatic ecosystems and freshwater fish diversity. Reviews in Fish Biology and Fisheries, 21(3), 463–479. https://doi.org/10.1007/s11160-011-9199-5 Leuven, R. S., van der Velde, G., Baijens, I., Snijfers, J., Zwart, C. V., Rob Lenders, H. J., & Vaate, A. (2009). The river Rhine: A global highway for dispersal of aquatic invasive species. Biological Invasions, 11(9), 1989–2008. https://doi.org/10.1007/s10530-009-9491-7 Li, B., Tan, W., Wen, L., Zhao, X., Peng, B., Yang, J., Lu, C., Wang, Y., & Lei, G. (2020). Anthropogenic habitat alternation significantly decreases α-and β-diversity of benthopelagic metacommunity in a large floodplain lake. Hydrobiologia, 847(1), 293–307. https://doi.org/10.1007/s10750-019-04091-2 Liu, C., Diagne, C., Angulo, E., Banerjee, A., Chen, Y., Cuthbert, R. N., Haubrock, P. J., Kirichenko, N., Pattison, Z., Watari, Y., Xiong, W., & Courchamp, F. (2021). Economic costs of biological invasions in Asia. NeoBiota, 67, 53–78. https://doi.org/10.3897/neobiota.67.58147 Liu, C., Wolter, C., Courchamp, F., Roura-Pascual, N., & Jeschke, J. M. (2022). Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 103(8), 3719. https://doi.org/10.1002/ecy.3719 Lopes, T. M., Bailly, D., Almeida, B. A., Santos, N. C. L., Gimenez, B. C. G., Landgraf, G. O., Sales, P. C. L., Lima-Ribeiro, M. S., Cassemiro, F. A. S., Rangel, T. F., Diniz-Filho, J. A. F., Agostinho, A. A., & Gomes, L. C. (2017). Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS One, 12(6), 0179684. https://doi.org/10.1371/journal.pone.0179684 Lübcker, N., Zengeya, T. A., Dabrowski, J., & Robertson, M. P. (2014). Predicting the potential distribution of invasive silver carp (Hypophthalmichthys molitrix) in South Africa. African Journal of Aquatic Science, 39(2), 157–165. https://doi.org/10.2989/16085914.2014.926856 MacDonald, A. A. M., & Kotanen, P. M. (2010). The effects of disturbance and enemy exclusion on performance of an invasive species, common ragweed, in its native range. Oecologia, 162(4), 977–986. https://doi.org/10.1007/s00442-009-1557-9 Mahapatra, B. B., & Aravind, N. A. (2021). Laevicaulis haroldi (Veronicellidae: Gastropoda), a potential future invader to India. Current Science, 120(11), 1–5. https://doi.org/10.18520/cs/v120/i11/1778-1781 Mamun, M., Kim, S., & An, K. G. (2018). Distribution pattern prediction of an invasive alien species largemouth bass using a maximum entropy model (MaxEnt) in the Korean peninsula. Journal of Asia-Pacific Biodiversity, 11(4), 516–524. https://doi.org/10.1016/j.japb.2018.09.007 Marvier, M., Kareiva, P., & Neubert, M. G. (2004). Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Int. Risk Analysis an international journal, 24(4), 869–878. https://doi.org/10.1111/j.0272-4332.2004.00485.x McGarvey, D. J., Brown, A. L., Chen, E. B., Viverette, C. B., Tuley, P. A., Latham, O. C., Gibbs, P. M., Richins, A. E., Deadwyler, M. C., Lin, B., & Kaseloo, E. A. (2021). Do fishes enjoy the view? A MaxEnt assessment of fish habitat suitability within scenic rivers. Biological Conservation, 263, 109357. https://doi.org/10.1016/j.biocon.2021.109357 Medellín-Castillo, N. A., Cruz-Briano, S. A., Leyva-Ramos, R., Moreno- Pirajan, J. C., Torres-Dosal, A., Giraldo- Gutierrez, L., Labrada- Delgado, G. J., Perez, R. O., Rodriguez- Estupinan, J. P., Lopez, S. Y. R., & Mendoza, M. S. B. (2020). Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and cadmium (II) in water. Journal of Environmental Management, 256, 109956. https://doi.org/10.1016/j.jenvman.2019.109956 Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415, 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837 Menaga, M., & Fitzsimmons, K. (2017). Growth of the tilapia industry in India. Aquaculture International, 48(3), 49–52. Misra, A. K., Saxena, A., Yaduvanshi, M., Mishra, A., Bhadauriya, Y., & Thakur, A. (2007). Proposed river-linking project of India: A boon or bane to nature. Environmental Geology, 51(8), 1361–1376. https://doi.org/10.1007/s00254-006-0434-7 Molur, S., Smith, K. G., Daniel, B. A., & Darwall, W. R. T.Compilers (Ed.) (2011). The status and distribution of freshwater biodiversity in the Western Ghats, India. Zoo Outreach Organisation. Morales-Marín, L. A., Rokaya, P., Sanyal, P. R., Sereda, J., & Lindenschmidt, K. E. (2019). Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change. Ecological Modelling, 407, 108718. https://doi.org/10.1016/j.ecolmodel.2019.108718 Morgan, D. L., Lear, K. O., Ebner, B. C., & Beatty, S. J. (2021). Net design for selective control of the “plague minnow” Gambusia holbrooki that minimises impact on native Australian fishes. Journal of Fish Biology, 99(6), 2060–2065. https://doi.org/10.1111/jfb.14895 Mori, E., Menchetti, M., Zozzoli, R., & Milanesi, P. (2019). The importance of taxonomy in species distribution models at a global scale: The case of an overlooked alien squirrel facing taxonomic revision. Journal of Zoology, 307(1), 43–52. https://doi.org/10.1111/jzo.12616 Nekrasova, O., Tytar, V., Pupins, M., Čeirāns, A., Marushchak, O., & Skute, A. (2021). A GIS modeling study of the distribution of viviparous invasive alien fish species in Eastern Europe in terms of global climate change, as exemplified by Poecilia reticulata Peters, 1859 and Gambusia holbrooki Girarg, 1859. Diversity, 13(8), 385. https://doi.org/10.3390/d13080385 Nuñez, M. A., Kuebbing, S., Dimarco, R. D., & Simberloff, D. (2012). Invasive species: To eat or not to eat, that is the question. Conservation Letters, 5(5), 334–341. https://doi.org/10.1111/j.1755-263X.2012.00250.x Nurubhasha, R., Sampath Kumar, N. S., Thirumalasetti, S. K., Simhachalam, G., & Dirisala, V. R. (2019). Extraction and characterization of collagen from the skin of Pterygoplichthys pardalis and its potential application in food industries. Food Science and Biotechnology, 28(6), 1811–1817. https://doi.org/10.1007/s10068-019-00601-z Orbán, I., Szitár, K., Kalapos, T., & Körel-Dulay, G. (2021). The role of disturbance in invasive plant establishment in a changing climate: Insights from a drought experiment. Biological Invasions, 23(6), 1877–1890. https://doi.org/10.1007/s10530-021-02478-8 Orfinger, A. B., & Goodding, D. D. (2018). The global invasion of the suckermouth armored catfish genus Pterygoplichthys (Siluriformes: Loricariidae): Annotated list of species, distributional summary, and assessment of impacts. Zoological Studies, 57, 7. https://doi.org/10.6620/ZS.2018.57-07 Ornelas, S., Gutiérrez, E., Juárez, A., Garciduenas, R., Espinoza, J. L., Perea, M., Flores, J. P., & Salas, G. (2011). Use of silage acid devil fish (Pterygoplichthys spp.) as protein supplement in finishing beef cattle. Journal of Agriculture, Science and Technology, 1, 1280–1283. Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics, 22, 36–43. https://doi.org/10.1016/j.ecoinf.2014.04.002 Park, H. C., Lim, J. C., Lee, J. H., & Lee, G. G. (2017). Predicting the potential distributions of invasive species using the Landsat imagery and MaxEnt: Focused on. Journal of the Korean Society of Environmental Restoration Technology, 20(1), 1–12. https://doi.org/10.13087/kosert.2017.20.1 Parravicini, V., Azzurro, E., Kulbicki, M., & Belmaker, J. (2015). Niche shift can impair the ability to predict invasion risk in the marine realm: An illustration using Mediterranean fish invaders. Ecology Letters, 18(3), 246–253. https://doi.org/10.1111/ele.12401 Pathak, R. K., Gopesh, A., Joshi, K. D., & Dwivedi, A. C. (2014). Cyprinus carpio var communis, in middle stretch of River Ganga at Allahabad, 45, 60 http://krishi.icar.gov.in/jspui/handle/123456789/16090 Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography, 38(5), 817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x Pool, T. K., & Olden, J. D. (2012). Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions, 18(4), 366–376. https://doi.org/10.1111/j.1472-4642.2011.00836.x Poulin, R., Paterson, R. A., Townsend, C. R., Tompkins, D. M., & Kelly, D. W. (2011). Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. Freshwater Biology, 56(4), 676–688. https://doi.org/10.1111/j.1365-2427.2010.02425.x Ragaza, J. A., Hossain, M. S., & Kumar, V. (2021). The potential of invasive alien fish species as novel aquafeed ingredients. In Sustainable aquafeeds (pp. 57–76). CRC Press. https://doi.org/10.1201/9780429331664-3 Raghavan, R., Prasad, G., Ali, P. H., & Pereira, B. (2008a). Fish fauna of Chalakudy River, part of Western Ghats biodiversity hotspot, Kerala, India: Patterns of distribution, threats and conservation needs. Biodiversity and Conservation, 17(13), 3119–3131. https://doi.org/10.1007/s10531-007-9293-0 Raghavan, R., Prasad, G., Anvar-Ali, P. H., & Pereira, B. (2008b). Exotic fish species in a global biodiversity hotspot: Observations from River Chalakudy, part of Western Ghats, Kerala, India. Biological Invasions, 10, 37–40. https://doi.org/10.1007/s10530-007-9104-2 Rahel, F. J. (2002). Homogenization of freshwater faunas. Annual Review of Ecology, Evolution, and Systematics, 33, 291–315 https://www.jstor.org/stable/3069264 Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22(3), 521–533. https://doi.org/10.1111/j.1523-1739.2008.00950.x Raj, S., Kumar, A. B., Raghavan, R., & Dahanukar, N. (2020). Amazonian invaders in an Asian biodiversity hotspot: Understanding demographics for the management of the armoured sailfin catfish, Pterygoplichthys pardalis in Kerala. India. Journal of Fish Biology, 96(2), 549–553. https://doi.org/10.1111/jfb.14243 Raj, S., Kumar, A. B., Tharian, J., & Raghavan, R. (2021a). Illegal and unmanaged aquaculture, unregulated fisheries and extreme climatic events combine to trigger invasions in a global biodiversity hotspot. Biological Invasions, 23, 2373–2380. https://doi.org/10.1007/s10530-021-02525-4 Raj, S., Prakash, P., Reghunath, R., Tharian, J. C., Raghavan, R., & Kumar, A. B. (2021b). Distribution of alien invasive species in aquatic ecosystems of the southern Western Ghats, India. Aquatic Ecosystem Health & Management, 24(2), 64–75. https://doi.org/10.14321/aehm.024.02.10 Raja, M. N., & Ravikanth, G. (2020). The enemy of my enemy is still my enemy: The biological invasion and management of Gambusia in Peninsular India. Current Science, 119(11), 1752–1759. https://doi.org/10.18520/cs/v119/i11/1752-1759 Ray, A., Johnson, C., Manna, R. K., Bitha, R., Gupta, S. D., Tiwari, N. K., Swain, H. S., & Das, K. B. (2021). Establishment and impact of exotic Cyprinus carpio (common carp) on native fish diversity in Buxar stretch of River Ganga, India. Aquatic Ecosystem Health & Management, 24(2), 52–63. https://doi.org/10.14321/aehm.024.02.09 Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873. https://doi.org/10.1111/brv.12480 Robichaud, C. D., & Rooney, R. C. (2022). Invasive grass causes biotic homogenization in wetland birds in a Lake Erie coastal marsh. Hydrobiologia, 849(14), 3197–3212. https://doi.org/10.1007/s10750-022-04925-6 Rodríguez-Rey, M., Consuegra, S., Börger, L., & Garcia de Leaniz, C. (2019). Improving species distribution modelling of freshwater invasive species for management applications. PLoS One, 14(6), e0217896. https://doi.org/10.1371/journal.pone.0217896 Russell, D. J., Thuesen, P. A., & Thomson, F. E. (2012). A review of the biology, ecology, distribution and control of Mozambique tilapia, Oreochromis mossambicus (Peters 1852) (Pisces: Cichlidae) with particular emphasis on invasive Australian populations. Reviews in Fish Biology and Fisheries, 22(3), 533–554. https://doi.org/10.1007/s11160-011-9249-z Sandilyan, S. (2016). Occurrence of ornamental fishes: A looming danger for inland fish diversity of India. Current Science, 110(11), 2099–2104. https://doi.org/10.18520/cs/v110/i11/2099-2104 Sandilyan, S., Meenakumari, B., Babu, C. R., & Mandal, R. (2018). Invasive alien species of India. Centre for Biodiversity Policy and Law (CEBPOL). National Biodiversity Authority, MoEF and CC, Govt. of India. Sarma, R. R., Munsi, M., & Neelavara Ananthram, A. (2015). Effect of climate change on invasion risk of giant African snail (Achatina fulica Férussac, 1821: Achatinidae) in India. PloS one, 10(11), e0143724. https://doi.org/10.1371/journal.pone.0143724 Seshagiri, B., Swain, S. K., Pillai, B. R., Satyavati, C., Sravanti, Y., Rangacharyulu, P. V., Rathod, R., & Ratnaprakash, V. (2021). Suckermouth armoured catfish (Pterygoplichthys spp.) menace in freshwater aquaculture and natural aquatic systems in Andhra Pradesh, India. International Journal of Fisheries and Aquatic Studies, 9(1), 375–384. https://doi.org/10.22271/fish.2021.v9.i1e.2423 Shinoj, P., Baiju, K. K., & Vijayagopal, P. (2021). Status and prospects of ornamental fish and fish feed industry in Southern India. Marine Fisheries Information Service, Technical and Extension Series, 248, 7–11 http://eprints.cmfri.org.in/15218/ Singh, A. K. (2014). Emerging alien species in Indian aquaculture: Prospects and threats. Department of Aquatic Biology & Fisheries, 2(1), 32–41 http://krishi.icar.gov.in/jspui/handle/123456789/1809 Singh, A. K. (2021). State of aquatic invasive species in tropical India: An overview. Aquatic Ecosystem Health & Management, 24(2), 13–23. https://doi.org/10.14321/aehm.024.02.05 Singh, A. K., Ansari, A., Srivastava, S. C., Verma, P., & Pathak, A. K. (2014a). Impacts of invasive fishes on fishery dynamics of the Yamuna river, India. Agricultural Sciences, 5, 10. https://doi.org/10.4236/as.2014.510086 Singh, A. K., Kumar, D., Srivastava, S. C., Ansari, A., Jena, J. K., & Sarkar, U. K. (2013). Invasion and impacts of alien fish species in the Ganga River, India. Aquatic Ecosystem Health & Management, 16(4), 408–414. https://doi.org/10.1080/14634988.2013.857974 Singh, A. K., & Lakra, W. S. (2011). Risk and benefit assessment of alien fish species of the aquaculture and aquarium trade into India. Reviews in Aquaculture, 3(1), 3–18. https://doi.org/10.1111/j.1753-5131.2010.01039.x Singh, A. K., Pathak, A. K., & Lakra, W. S. (2010). Invasion of an exotic fish—Common carp, Cyprinus carpio L.(Actinopterygii: Cypriniformes: Cyprinidae) in the Ganga River, India and its impacts. Acta Ichthyologica et Piscatoria, 40(1), 11–19. https://doi.org/10.3750/AIP2010.40.1.02 Singh, A. K., Verma, P., Srivastava, S. C., & Tripathi, M. (2014b). Invasion, biology and impact of feral population of Nile tilapia (Oreochromis niloticus Linnaeus, 1757) in the Ganga River (India). Asia Pacific Journal of Research, 1, 14. Soundararajan, N., Raj, R. M., Kamaladhasan, N., Saidanyan, R. I., & Chandrasekaran, S. (2015). On-line trade of aesthetic exotic organisms: Sword of Damocles? Current Science, 109(8), 1404–1410. https://doi.org/10.18520/v109/i8/1404-1410 Srivastava, V., Lafond, V., & Griess, V. C. (2019). Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Reviews, 14(020), 1–13. https://doi.org/10.1079/PAVSNNR201914020 Strecker, U. (2006). The impact of invasive fish on an endemic Cyprinodon species flock (Teleostei) from Laguna Chichancanab, Yucatan, Mexico. Ecology of Freshwater Fish, 15(4), 408–418. https://doi.org/10.1111/j.1600-0633.2006.00159.x Sunish, I. P., Khan, Z. A., Shriram, A. N., & Vijayachari, P. (2015). Declining trend of malaria in Car Nicobar Island, inhabited by the Nicobarese tribe: Plausible factors. Journal of Vector Borne Diseases, 52(2), 178. Taucare-Ríos, A., Bizama, G., & Bustamante, R. O. (2016). Using global and regional species distribution models (SDM) to infer the invasive stage of Latrodectus geometricus (Araneae: Theridiidae) in the Americas. Environmental Entomology, 45(6), 1379–1385. https://doi.org/10.1093/ee/nvw118 Tsang, A. H. F., & Dudgeon, D. (2021). A manipulative field experiment reveals the ecological effects of invasive mosquitofish (Gambusia affinis) in a tropical wetland. Freshwater Biology, 66(5), 869–883. https://doi.org/10.1111/fwb.13683 Vattakaven, T., George, R., Balasubramanian, D., Rejou-Mechain, M., Muthusankar, G., Ramesh, B., & Prabhakar, R. (2016). India Biodiversity Portal: An intergrated, interactive and participatory biodiversity informatics platform. Biodiversity Data Journal 4:e10279. https://doi.org/10.3897/BDJ.410279 Vythalingam, L. M., Raghavan, R., Hossain, M., & Bhassu, S. (2022). Predicting aquatic invasions in a megadiverse region: Maximum-entropy-based modelling of six alien fish species in Malaysia. Aquatic Conservation: Marine and Freshwater Ecosystems, 32(1), 157–170. https://doi.org/10.1002/aqc.3729 Ward, D. F. (2007). Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9, 723–735. https://doi.org/10.1007/s10530-006-9072-y Wei, B., Wang, R., Hou, K., Wang, X., & Wu, W. (2018). Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation, 16, e00477. https://doi.org/10.1016/j.gecco.2018.e00477 Yan, H., Feng, L., Zhao, Y., Feng, L., Wu, D., & Zhu, C. (2020). Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Global Ecology and Conservation, 21, 00856. https://doi.org/10.1016/j.gecco.2019.e00856 Yaqoob, S. (2021). A review of structure, origin, purpose & impact of common carp (Cyprinus carpio) in India. Annals of the Romanian Society for Cell Biology, 25(6), 34–47. Yick, J. L., Wisniewski, C., Diggle, J., & Patil, J. G. (2021). Eradication of the invasive common carp, Cyprinus carpio from a Large Lake: Lessons and insights from the Tasmanian experience. Fishes, 6(1), 6. https://doi.org/10.3390/fishes6010006 Zhan, A., Zhang, L., Xia, Z., Ni, P., Xiong, W., Chen, Y., Haffner, G. D., & Maclsaac, H. J. (2015). Water diversions facilitate spread of non-native species. Biological Invasions, 17, 3073–3080. https://doi.org/10.1007/s10530-015-0940-1 Zhang, H., Jinyue, S., Haoxiang, Z., Ming, L., & Wuhong, H. (2021a). Predicting the distribution of the invasive species Leptocybe invasa: Combining MaxEnt and geodetector models. Insects, 12(2), 92. https://doi.org/10.3390/insects12020092 Zhang, Y., Tang, J., Ren, G., Zhao, K., & Wang, X. (2021b). Global potential distribution prediction of Xanthium italicum based on Maxent model. Scientific Reports, 11(1), 16545. https://doi.org/10.1038/s41598-021-96041-z