OpenAltimetry - rapid analysis and visualization of Spaceborne altimeter data

S. S. Khalsa1, A. A. Borsa2, Viswanath Nandigam3, Minh Q. Phan3, Kai Lin3, C. J. Crosby4, H. A. Fricker2, Chaitan Baru3, Luis Alberto Lopez1
1University of Colorado Boulder, Boulder, CO, USA
2Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
3University of California San Diego, La Jolla, CA, USA
4UNAVCO, Boulder, CO, USA

Tóm tắt

Abstract

NASA’s Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) carries a laser altimeter that fires 10,000 pulses per second towards Earth and records the travel time of individual photons to measure the elevation of the surface below. The volume of data produced by ICESat-2, nearly a TB per day, presents significant challenges for users wishing to efficiently explore the dataset. NASA’s National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC), which is responsible for archiving and distributing ICESat-2 data, provides search and subsetting services on mission data products, but providing interactive data discovery and visualization tools needed to assess data coverage and quality in a given area of interest is outside of NSIDC’s mandate. The OpenAltimetry project, a NASA-funded collaboration between NSIDC, UNAVCO and the University of California San Diego, has developed a web-based cyberinfrastructure platform that allows users to locate, visualize, and download ICESat-2 surface elevation data and photon clouds for any location on Earth, on demand. OpenAltimetry also provides access to elevations and waveforms for ICESat (the predecessor mission to ICESat-2). In addition, OpenAltimetry enables data access via APIs, opening opportunities for rapid access, experimentation, and computation via third party applications like Jupyter notebooks. OpenAltimetry emphasizes ease-of-use for new users and rapid access to entire altimetry datasets for experts and has been successful in meeting the needs of different user groups. In this paper we describe the principles that guided the design and development of the OpenAltimetry platform and provide a high-level overview of the cyberinfrastructure components of the system.

Từ khóa


Tài liệu tham khảo

Atkins, D., Droegemeier, K., Feldman, S., Garcia-Molina, H., Klein, M., Messerschmitt, D., Messina, P., Ostriker, J., Wright, M. (2003). Revolutionizing science and engineering through Cyberinfrastructure. Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure, January

Borsa AA, Fricker HA, Brunt KM (2019) A terrestrial validation of ICESat elevation measurements and implications for global Reanalyses. IEEE Trans Geosci Remote Sens 57(9):6946–6959

Earth Observing System Data and Information System (EOSDIS). (2009). Earth Observing System ClearingHOuse (ECHO) / Reverb, [retired online application]. Greenbelt, MD: EOSDIS, Goddard Space Flight Center (GSFC) National Aeronautics and Space Administration (NASA). URL: http://reverb.earthdata.nasa.gov

Crosby, C.J., Arrowsmith, J.R. and Nandigam, V. (2020). Zero to a trillion: advancing earth surface process studies with open access to high-resolution topography. In Developments in Earth Surface Processes (Vol. 23, pp. 317-338). Elsevier

Kavvada A, Metternicht G, Kerblat F, Mudau N, Haldorson M, Laldaparsad S, Friedl L, Held A, Chuvieco E (2020) Towards delivering on the sustainable development goals using earth observations. Remote Sens Environ 247:111930. https://doi.org/10.1016/j.rse.2020.111930

Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M (2017) The ice, cloud, and land elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens Environ 190:260–273

Mcintyre RA (2014) Overcoming “The Valley of Death.”. Sci Prog 97(3):234–248. https://doi.org/10.3184/003685014X14079421402720

Murphy, K.J., Davies, D.K., Michael, K., Justice, C.O., Schmaltz, J.E., Boller, R., McLemore, B.D., Ding, F., Vollmer, B. and Wong, M.M. (2015). LANCE, NASA’s land, atmosphere near real-time capability for EOS. In Time-Sensitive Remote Sensing (pp. 113–127). Springer, New York, NY

Schutz, B. E., H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio (2005). Overview of the ICESat Mission. Geophysical Research Letters, Vol. 32, L21S01, https://doi.org/10.1029/2005GL024009