Open versus Interpenetrated: Switchable Supramolecular Trajectories in Mechanosynthesis of a Halogen-Bonded Borromean Network
Tài liệu tham khảo
James, 2012, Mechanochemistry: opportunities for new and cleaner synthesis, Chem. Soc. Rev., 41, 413, 10.1039/C1CS15171A
Friščic, 2012, Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks, Chem. Soc. Rev., 41, 3493, 10.1039/c2cs15332g
Baláž, 2013, Hallmarks of mechanochemistry: from nanoparticles to technology, Chem. Soc. Rev., 42, 7571, 10.1039/c3cs35468g
Šepelák, 2013, Mechanochemical reactions and syntheses of oxides, Chem. Soc. Rev., 42, 7507, 10.1039/c2cs35462d
Ravnsbæk, 2014, Mechanochemical synthesis of poly(phenylene vinylenes), ACS Macro Lett., 3, 305, 10.1021/mz500098r
Užarević, 2015, Real-time and in situ monitoring of mechanochemical reactions: a new playground for all chemists, J. Phys. Chem. Lett., 6, 4129, 10.1021/acs.jpclett.5b01837
Do, 2017, Mechanochemistry: a force of synthesis, ACS Cent. Sci., 3, 13, 10.1021/acscentsci.6b00277
Julien, 2017, Metal–organic frameworks meet scalable and sustainable synthesis, Green Chem., 19, 2729, 10.1039/C7GC01078H
Hernández, 2017, Altering product selectivity by mechanochemistry, J. Org. Chem., 82, 4007, 10.1021/acs.joc.6b02887
Tan, 2016, Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs), Chem. Commun., 52, 7760, 10.1039/C6CC02015A
Katsenis, 2015, In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework, Nat. Commun., 6, 6662, 10.1038/ncomms7662
Akimbekov, 2017, Experimental and theoretical evaluation of the stability of true MOF polymorphs explains their mechanochemical interconversions, J. Am. Chem. Soc., 139, 7952, 10.1021/jacs.7b03144
Karadeniz, 2019, Controlling the polymorphism and topology transformation in porphyrinic zirconium metal–organic frameworks via mechanochemistry, J. Am. Chem. Soc., 141, 19214, 10.1021/jacs.9b10251
Liu, 2016, Weaving of organic threads into a crystalline covalent organic framework, Science, 351, 365, 10.1126/science.aad4011
Danon, 2017, Braiding a molecular knot with eight crossings, Science, 355, 159, 10.1126/science.aal1619
Lu, 2017, Molecular borromean rings based on dihalogenated ligands, Chem, 3, 110, 10.1016/j.chempr.2017.06.006
Dang, 2019, Coordination-driven self-assembly of a molecular figure-eight knot and other topologically complex architectures, Nat. Commun., 10, 2057, 10.1038/s41467-019-10075-6
Zhong, 2019, Self-sorting assembly of molecular trefoil knots of single handedness, J. Am. Chem. Soc., 141, 14249, 10.1021/jacs.9b06127
Forgan, 2011, Chemical topology: complex molecular knots, links, and entanglements, Chem. Rev., 111, 5434, 10.1021/cr200034u
Cantrill, 2005, Nanoscale borromean rings, Acc. Chem. Res., 38, 1, 10.1021/ar040226x
Liantonio, 2003, Fluorous interpenetrated layers in a three-component crystal matrix, Cryst. Growth Des., 3, 355, 10.1021/cg0340244
Liantonio, 2006, Metric engineering of supramolecular Borromean rings, Chem. Commun., 17, 1819, 10.1039/b516730b
Huang, 2014, Self-assembly of molecular Borromean rings from bimetallic coordination rectangles, Angew. Chem. Int. Ed., 53, 11218, 10.1002/anie.201406193
Thorp-Greenwood, 2015, An infinite chainmail of M6L6 metallacycles featuring multiple Borromean links, Nat. Chem., 7, 526, 10.1038/nchem.2259
Kumar, 2017, Halogen bonded Borromean networks by design: topology invariance and metric tuning in a library of multi-component systems, Chem. Sci., 8, 1801, 10.1039/C6SC04478F
Kim, 2016, Selective synthesis of molecular Borromean rings: engineering of supramolecular topology via coordination-driven self-assembly, J. Am. Chem. Soc., 138, 8368, 10.1021/jacs.6b04545
Clark, 2005, First principles methods using CASTEP, Zeitschrift für Kristallographie - Crystalline Materials, 220, 567, 10.1524/zkri.220.5.567.65075
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Tkatchenko, 2009, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett., 102, 073005, 10.1103/PhysRevLett.102.073005
Halasz, 2013, In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction, Nat. Protoc., 8, 1718, 10.1038/nprot.2013.100
Friščić, 2013, Real-time and in situ monitoring of mechanochemical milling reactions, Nat. Chem., 5, 66, 10.1038/nchem.1505
Amico, 1998, Perfluorocarbon−hydrocarbon self-assembling. 1D infinite chain formation driven by nitrogen···Iodine interactions, J. Am. Chem. Soc., 120, 8261, 10.1021/ja9810686
Boldyreva, 2013, Mechanochemistry of inorganic and organic systems: what is similar, what is different?, Chem. Soc. Rev., 42, 7719, 10.1039/c3cs60052a
Užarević, 2018, Enthalpy vs. friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks, Chem. Sci., 9, 2525, 10.1039/C7SC05312F
Julien, 2017, The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy, Beilstein J. Org. Chem., 13, 2160, 10.3762/bjoc.13.216