Open-source real-time monitoring system of temperature and force during friction stir spot welding

Adham E. Ragab1, Abdulrahman Alsaty1, Ali Alsamhan1, Abdulsalam Abdulaziz Al-Tamimi1, Abdulmajeed Dabwan2, Abdelaty Sayed1, Waleed Alghilan3,4
1Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
2Industrial Engineering Department, College of Engineering, Taibah University, Medina 41411, Saudi Arabia
3Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy
4Scuola Superiore Sant'Anna, Department of Excellence in Robotics & AI, Pisa, Italy

Tài liệu tham khảo

Young, P. What Is Spot Welding (and Is It Important)?. Available online: 〈https://weldingheadquarters.com/what-is-spot-welding/#:~:text=Spot%20welding%20is%20considered%20to,resistance%20and%20make%20them%20fuse〉 (Accessed on 27/02/2023). Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Temple-Smith, P.; Dawes, C.J. Friction welding. 1991. Mishra, 2014 Gerlich, 2006, Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding, Metall. Mater. Trans. A, 37, 2773, 10.1007/BF02586110 Fujimoto, 2005, Development of friction spot joining, Weld. World, 49, 18, 10.1007/BF03266470 Veljić, 2015, Advantages of friction stir welding over arc welding with respect to health and environmental protection and work safety, Soc. Struct. Integr. Life Inst. Mater. Test., 15, 111 Paul Briskham; Nicholas Blundell; Li Han; Richard Hewitt; Ken Young; Boomer, D. , 2006. Comparison of Self-Pierce Riveting, Resistance Spot Welding and Spot Friction Joining for Aluminium Automotive Sheet,. SAE Technical Paper 2006. Christian, 2002 Smith, C.B.; Hinrichs, J.F.; Ruehl, P.C. , 2004.Friction Stir and Friction Stir Spot Welding-Lean, Mean and Green. 2004. Yang, 2014, Friction stir spot welding: a review on joint macro- and microstructure, property, and process modelling, Adv. Mater. Sci. Eng., 2014, 10.1155/2014/697170 Venukumar, 2014, Microstructural and mechanical properties of walking friction stir spot Welded AA 6061-T6 Sheets, Procedia Mater. Sci., 6, 656, 10.1016/j.mspro.2014.07.081 Bagheri, 2019, Friction stir spot vibration welding: improving the microstructure and mechanical properties of Al5083 joint, Metallogr., Microstruct., Anal., 8, 713, 10.1007/s13632-019-00563-y Cox, 2012, Effect of pin length and rotation rate on the tensile strength of a friction stir spot-welded Al alloy: a contribution to automated production, Mater. Manuf. Process., 27, 472, 10.1080/10426914.2011.585503 Chen, Y.-C.; Farid, H.; Prangnell, P.B. 2010. Feasibility Study of Short Cycle Time Friction Stir Spot Welding Thin Sheet Al to Ungalvanised and Galvanized Steel. 2010. Shen, 2019, Microstructure, static and fatigue properties of refill friction stir spot welded 7075-T6 aluminium alloy using a modified tool, Sci. Technol. Weld. Join., 24, 587, 10.1080/13621718.2019.1572300 Casey, 2005, Evaluation of friction spot welds in aluminum alloys, SAE Tech. Pap. Rose, 2015, Proposed best modeling practices for assessing the effects of ecosystem restoration on fish, Ecol. Model., 300, 12, 10.1016/j.ecolmodel.2014.12.020 Boyes, 2018, The industrial internet of things (IIoT): An analysis framework, Comput. Ind., 101, 1, 10.1016/j.compind.2018.04.015 Lee, A.N., Lastra, J.L.M. , 2013. Enhancement of industrial monitoring systems by utilizing context awareness. In Proceedings of the 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 25–28 Feb. 2013, 2013; pp. 277–284. Lei, 2017, MTConnect compliant monitoring for finishing assembly interfaces of large-scale components: a vertical tail section application, J. Manuf. Syst., 45, 121, 10.1016/j.jmsy.2017.09.001 Edrington, 2014, Machine monitoring system based on MTConnect technology, Procedia CIRP, 22, 92, 10.1016/j.procir.2014.07.148 Erazo Navas, 2021, MTConnect-based decision support system for local machine tool monitoring, Procedia Comput. Sci., 180, 69, 10.1016/j.procs.2021.01.130 Torres, D.; Dias, J.P.; Restivo, A.; Ferreira, H.S. , 2020. Real-time Feedback in Node-RED for IoT Development: An Empirical Study. In Proceedings of the 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), 14–16 Sept. 2020, 2020; pp. 1–8. Mishra, 2020, Real time monitoring and control of friction stir welding process using multiple sensors, CIRP J. Manuf. Sci. Technol., 30, 1, 10.1016/j.cirpj.2020.03.004 Balachandar, 2020, Condition monitoring of FSW tool using vibration analysis – A machine learning approach, Mater. Today.: Proc., 27, 2970, 10.1016/j.matpr.2020.04.903 Malafaia, 2010, Evaluation of dynamic defect detection in FSSW welded joints under fatigue tests, Procedia Eng., 2, 1823, 10.1016/j.proeng.2010.03.196 Zhang, 2015, Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process, Appl. Opt., 54, 7483, 10.1364/AO.54.007483 Lee, 1999, Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current, Int. J. Adv. Manuf. Technol., 15, 238, 10.1007/s001700050062 Al-Badour, F.; Mahgoub, A.; Bazoune, A.; Shuaib, A.; Merah, N. , 2017. On-Line Condition Monitoring of Friction Stir Spot Welding Tool Using Vibration Measurements. In Proceedings of the ASME 2017 Pressure Vessels and Piping Conference, 2017. Vilaça, 2007, Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR, Mater. Sci. Eng.: A, 445–446, 501, 10.1016/j.msea.2006.09.091 Richter-Trummer, 2010, Fibre Bragg grating sensors for monitoring the metal inert gas and friction stir welding processes, Meas. Sci. Technol., 21, 10.1088/0957-0233/21/8/085105 Sinha, 2008, Condition monitoring of first mode of metal transfer in friction stir welding by image processing techniques, Int. J. Adv. Manuf. Technol., 36, 484, 10.1007/s00170-006-0854-2 Badwelan, 2021, Novel technique for enhancing the strength of friction stir spot welds through dynamic welding, Parameters, 11, 280 Karthikeyan, 2013, Statistical optimization and sensitivity analysis of friction stir spot welding process parameters for joining AA 7075 aluminum alloy, Exp. Tech., 37, 6, 10.1111/j.1747-1567.2011.00746.x Paidar, 2014, Effects of the tool rotational speed and shoulder penetration depth on mechanical properties and failure modes of friction stir spot welds of aluminum 2024-T3 sheets, J. Mech. Sci. Technol., 28, 4893, 10.1007/s12206-014-1108-0 Witucki, J. , 2012. Raspberry pi driver for MAX31855 cold-junction compensated thermocouple-to-digital converter. 2012. Abbas, 2017, Effect of equal channel angular pressing on the surface roughness of solid state recycled aluminum alloy 6061 chips, Adv. Mater. Sci. Eng., 2017, 5131403, 10.1155/2017/5131403 Shen, 2020, Advances in friction stir spot welding, Crit. Rev. Solid State Mater. Sci., 45, 457, 10.1080/10408436.2019.1671799 Al-Tamimi, A.A.; Sanjay, C. , 2023. Intelligent Systems to Optimize and Predict Machining Performance of Inconel 825 Alloy. 2023, 13, 375. Acayaba, 2015, Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel, CIRP J. Manuf. Sci. Technol., 11, 62, 10.1016/j.cirpj.2015.08.004 Jang, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst., Man, Cybern., 23, 665, 10.1109/21.256541 Bahadır, 2017, Ch. 15 Chaudhary, 2022, Experimental investigation and ANFIS-based modelling of effect of process parameters on friction stir spot welding of Al 6061-T6, Adv. Mater. Process. Technol., 1 Abbas, 2017, Prediction Model of Cutting Parameters for Turning High Strength Steel Grade-H: Comparative Study of Regression Model versus ANFIS, Adv. Mater. Sci. Eng., 2017, 2759020, 10.1155/2017/2759020 Byvatov, 2003, Comparison of support vector machine and artificial neural network systems for drug/nondrug classification, J. Chem. Inf. Comput. Sci., 43, 1882, 10.1021/ci0341161 Asilturk, 2011, On-line surface roughness recognition system by vibration monitoring in CNC turning using adaptive neuro-fuzzy inference system (ANFIS), Int. J. Phys. Sci., 6, 5353 Klobčar, 2014, Parametric study of friction stir spot welding of aluminium alloy 5754, Metalurgija, 53, 21 Bagheri, 2020, Advanced approach to modify friction stir spot welding process, Met. Mater. Int., 26, 1562, 10.1007/s12540-019-00416-x Gerlich, 2005, Peak temperatures and microstructures in aluminium and magnesium alloy friction stir spot welds, Sci. Technol. Weld. Join., 10, 647, 10.1179/174329305X48383 Gardi, 2023, Effect of exfoliation corrosion on the mechanical properties of friction stir spot welded 2024-T3 AA joints, Adv. Mater. Sci. Eng., 2023, 9629740, 10.1155/2023/9629740 Hoaglin, 1978, The hat matrix in regression and ANOVA, Am. Stat., 32, 17 Yuan, 2011, Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds, J. Mater. Process. Technol., 211, 972, 10.1016/j.jmatprotec.2010.12.014 Su, P.; Gerlich, A.; North, T. 2005. Friction Stir Spot Welding of Aluminum and Magnesium Alloy Sheets. In Proceedings of the SAE 2005 World Congress & Exhibition, 2005. Venukumar, 2013, Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061-T6 using filler plate, Trans. Nonferrous Met. Soc. China, 23, 2833, 10.1016/S1003-6326(13)62804-6 Shen, 2015, Influence of processing parameters on microstructure and mechanical performance of refill friction stir spot welded 7075-T6 aluminium alloy, Sci. Technol. Weld. Join., 20, 48, 10.1179/1362171814Y.0000000253 Ali, 2018, Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?, Ch. 1