Đặc điểm động và tĩnh của phản xạ baroreflex xoang carotid trong chuột có suy tim mãn tính sau nhồi máu cơ tim

The Journal of Physiological Sciences - Tập 60 - Trang 283-298 - 2010
Toru Kawada1, Meihua Li1,2, Atsunori Kamiya1, Shuji Shimizu1,2, Kazunori Uemura1, Hiromi Yamamoto3, Masaru Sugimachi1
1Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
2Japan Association for the Advancement of Medical Equipment, Tokyo, Japan
3Division of Cardiology, Department of Internal Medicine, Kinki University School of Medicine, Osaka, Japan

Tóm tắt

Chúng tôi ước lượng các đặc điểm động học của phản xạ baroreflex xoang carotid trong chuột kiểm soát bình thường và chuột suy tim mãn tính (CHF) sau nhồi máu cơ tim. Đầu tiên, hàm truyền điều kiện thần kinh từ áp suất xoang carotid đến hoạt động của dây thần kinh giao cảm tạng (SNA) và phản ứng bước tương ứng của nó được kiểm tra. Mặc dù phản ứng ổn định đã bị suy giảm ở CHF, nhưng phản ứng đỉnh âm và thời gian đến đỉnh không thay đổi đáng kể, cho thấy các đặc điểm động học của cung phản xạ thần kinh vẫn được bảo tồn. Tiếp theo, hàm truyền điều kiện ngoại vi từ SNA đến huyết áp động mạch (AP) và phản ứng bước tương ứng của nó cũng được xem xét. Phản ứng ổn định và độ dốc ban đầu đều bị giảm ở CHF, cho thấy các phản ứng của cơ quan đích bị suy giảm. Trong một nghiên cứu mô phỏng dựa trên các đặc điểm động và tĩnh, tỷ lệ phục hồi của AP giảm dần khi kích thước của sự nhiễu tăng lên ở CHF, cho thấy khả năng tích lũy để đệm huyết áp AP bị mất ở CHF mặc dù AP ở mức cơ sở vẫn tương đối được duy trì.

Từ khóa

#baroreflex #suy tim mãn tính #áp suất xoang carotid #hoạt động dây thần kinh giao cảm tạng #huyết áp động mạch

Tài liệu tham khảo

Ikeda Y, Kawada T, Sugimachi M, Kawaguchi O, Shishido T, Sato T, Miyano H, Matsuura W, Alexander J Jr, Sunagawa K (1996) Neural arc of baroreflex optimizes dynamic pressure regulation in achieving both stability and quickness. Am J Physiol 271:H882–H890 Sato T, Kawada T, Inagaki M, Shishido T, Sugimachi M, Sunagawa K (2003) Dynamics of sympathetic baroreflex control of arterial pressure in rats. Am J Physiol Regul Integr Comp Physiol 285:R262–R270 White CW (1981) Abnormalities in baroreflex control of heart rate in canine heart failure. Am J Physiol 240:H793–H799 Wang W, Chen JS, Zucker IH (1990) Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation 81:1959–1966 Wang W, Chen JS, Zucker IH (1991) Carotid sinus baroreceptor reflex in dogs with experimental heart failure. Circ Res 68:1294–1301 Wang W, Brändle M, Zucker IH (1993) Influence of vagotomy on the baroreflex sensitivity in anesthetized dogs with experimental heart failure. Am J Physiol 265:H1310–H1317 Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124 Shoukas AA, Callahan CA, Lash JM, Haase EB (1991) New technique to completely isolate carotid sinus baroreceptor regions in rats. Am J Physiol 260:H300–H303 Sato T, Kawada T, Miyano H, Shishido T, Inagaki M, Yoshimura R, Tatewaki T, Sugimachi M, Alexander J Jr, Sunagawa K (1999) New simple methods for isolating baroreceptor regions of carotid sinus and aortic depressor nerves in rats. Am J Physiol 276:H326–H332 Kawada T, Kamiya A, Li M, Shimizu S, Uemura K, Yamamoto H, Sugimachi M (2009) High levels of circulating angiotensin II shift the open-loop baroreflex control of splanchnic sympathetic nerve activity, heart rate and arterial pressure in anesthetized rats. J Physiol Sci 59:447–455 Marmarelis PZ, Marmarelis VZ (1978) The white noise method in system identification. In: Analysis of physiological systems. Plenum, New York, pp 131–221 Kent BB, Drane JW, Blumenstein B, Manning JW (1972) A mathematical model to assess changes in the baroreceptor reflex. Cardiology 57:295–310 Glantz SA (2002) Primer of biostatistics, 5th edn. McGraw-Hill, New York Kawada T, Yanagiya Y, Uemura K, Miyamoto T, Zheng C, Li M, Sugimachi M, Sunagawa K (2003) Input-size dependence of the baroreflex neural arc transfer characteristics. Am J Physiol Heart Circ Physiol 284:H404–H415 Yamamoto K, Kawada T, Kamiya A, Takaki H, Shishido T, Sunagawa K, Sugimachi M (2008) Muscle mechanoreflex augments arterial baroreflex-mediated dynamic sympathetic response to carotid sinus pressure. Am J Physiol Heart Circ Physiol 295:H1081–H1089 Kamiya A, Kawada T, Yamamoto K, Mizuno M, Shimizu S, Sugimachi M (2008) Upright tilt resets dynamic transfer function of baroreflex neural arc to minify the pressure disturbance in total baroreflex control. J Physiol Sci 58:189–198 Mohrman DE, Heller LJ (2006) Cardiovascular physiology, 6th edn. McGraw Hill, New York Sato T, Kawada T, Inagaki M, Shishido T, Takaki H, Sugimachi M, Sunagawa K (1999) New analytic framework for understanding sympathetic baroreflex control of arterial pressure. Am J Physiol 276:H2251–H2261 Lepage S (2008) Acute decompensated heart failure. Can J Cardiol 24(Suppl B):6B–8B Masaki H, Imaizumi T, Harasawa Y, Takeshita A (1994) Dynamic arterial baroreflex in rabbits with heart failure induced by rapid pacing. Am J Physiol 267:H92–H99 Kawai H, Mohan A, Hagen J, Dong E, Armstrong J, Stevens SY, Liang CS (2000) Alterations in cardiac adrenergic terminal function and β-adrenoceptor density in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 278:H1708–H1716 Kawada T, Shishido T, Inagaki M, Zheng C, Yanagiya Y, Uemura K, Sugimachi M, Sunagawa K (2002) Estimation of baroreflex gain using a baroreflex equilibrium diagram. Jpn J Physiol 52:21–29 Kashihara K, Kawada T, Li M, Sugimachi M, Sunagawa K (2004) Bezold-Jarisch reflex blunts arterial baroreflex via the shift of neural arc toward lower sympathetic nerve activity. Jpn J Physiol 54:395–404 Yamamoto K, Kawada T, Kamiya A, Takaki H, Miyamoto T, Sugimachi M, Sunagawa K (2004) Muscle mechanoreflex induces the pressor response by resetting the arterial baroreflex neural arc. Am J Physiol Heart Circ Physiol 286:H1382–H1388 Kamiya A, Kawada T, Yamamoto K, Michikami D, Ariumi H, Uemura K, Zheng C, Shimizu S, Aiba T, Miyamoto T, Sugimachi M, Sunagawa K (2005) Resetting of the arterial baroreflex increases orthostatic sympathetic activation and prevents postural hypotension in rabbits. J Physiol 566:237–246 Michikami D, Kamiya A, Kawada T, Inagaki M, Shishido T, Yamamoto K, Ariumi H, Iwase S, Sugenoya J, Sunagawa K, Sugimachi M (2006) Short-term electroacupuncture at Zusanli resets the arterial baroreflex neural arc toward lower sympathetic nerve activity. Am J Physiol Heart Circ Physiol 291:H318–H326 Ninomiya I, Nisimaru N, Irisawa H (1971) Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol 221:1346–1351 Matsukawa K, Ninomiya I, Nishiura N (1993) Effects of anesthesia on cardiac and renal sympathetic nerve activities and plasma catecholamines. Am J Physiol 265:R792–R797 Yamamoto H, Kawada T, Kamiya A, Kita T, Sugimachi M (2008) Electroacupuncture changes the relationship between cardiac and renal sympathetic nerve activities in anesthetized cats. Auton Neurosci 144:43–49 Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159 Kawada T, Uemura K, Kashihara K, Jin Y, Li M, Zheng C, Sugimachi M, Sunagawa K (2003) Uniformity in dynamic baroreflex regulation of left and right cardiac sympathetic nerve activities. Am J Physiol Regul Integr Comp Physiol 284:R1506–R1512 Kawada T, Shishido T, Inagaki M, Tatewaki T, Zheng C, Yanagiya Y, Sugimachi M, Sunagawa K (2001) Differential dynamic baroreflex regulation of cardiac and renal sympathetic nerve activities. Am J Physiol Heart Circ Physiol 280:H1581–H1590 Kamiya A, Kawada T, Yamamoto K, Michikami D, Ariumi H, Miyamoto T, Shimizu S, Uemura K, Aiba T, Sunagawa K, Sugimachi M (2005) Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure. Am J Physiol Heart Circ Physiol 289:H2641–H2648 Kassis E (1987) Cardiovascular response to orthostatic tilt in patients with severe congestive heart failure. Cardiovasc Res 21:362–368 Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Staiger C, Holcslaw TL, Amann-Zalan I, DeMets DL (2002) Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) study. Circulation 106:2194–2199 Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342:145–153 Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects with cardiovascular Disease (TRANSCEND) Investigators, Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P (2008) Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet 372:1174–1183 Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A (2008) Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 10:884–891 Mancia G, Seravalle G, Giannattasio C, Bossi M, Preti L, Cattaneo BM, Grassi G (1992) Reflex cardiovascular control in congestive heart failure. Am J Cardiol 69:17G–23G Eckberg DL, Drabinsky M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 285:877–883 Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD, Rossing MA (2007) Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension 50:904–910 Sato T, Kawada T, Sugimachi M, Sunagawa K (2002) Bionic technology revitalizes native baroreflex function in rats with baroreflex failure. Circulation 106:730–734 Gotoh TM, Tanaka K, Morita H (2005) Controlling arterial blood pressure using a computer-brain interface. Neuroreport 16:343–347 Kawada T, Shimizu S, Yamamoto H, Shishido T, Kamiya A, Miyamoto T, Sunagawa K, Sugimachi M (2009) Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control. Circ J 73:851–859 Åström K, Hägglund T (1995) PID controllers: theory, design, and tuning, 2nd edn. International Society of Automation, Research Triangle Park, NC Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern 55:135–144