Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Quảng cáo việc làm trực tuyến ở Italy: phân tích theo vùng về các chuyên gia ICT
Journal of the Italian Statistical Society - Trang 1-25 - 2023
Tóm tắt
Tại các quốc gia châu Âu, có sự quan tâm ngày càng tăng trong việc tích hợp các nguồn số liệu thống kê truyền thống về thị trường lao động với quảng cáo việc làm trực tuyến. Những thông tin này cung cấp cái nhìn chi tiết và kịp thời về việc sử dụng Internet để tuyển dụng cũng như các kỹ năng cụ thể cần thiết ở các cấp độ khác nhau (đặc biệt là ở cấp độ lãnh thổ và ngành nghề). Trong bối cảnh này, bài báo đề xuất một phân tích về sự tương đồng giữa các vùng của Italy liên quan đến các kỹ năng mà các nhà tuyển dụng yêu cầu. Nghiên cứu xem xét một nhóm cụ thể các nghề liên quan đến đổi mới, các chuyên gia CNTT, được cho là đủ đại diện bởi dữ liệu trực tuyến. Các kết quả cho thấy khoảng cách theo vùng về việc sử dụng các quảng cáo trực tuyến và sự khác biệt trong các hồ sơ nghề nghiệp về các kỹ năng yêu cầu. Cuối cùng, sự tương đồng về kỹ năng giữa các vùng được so sánh với một số đặc điểm vùng liên quan đến thị trường lao động và đào tạo.
Từ khóa
#quảng cáo việc làm trực tuyến #thị trường lao động #kỹ năng nghề nghiệp #chuyên gia ICT #phân tích theo vùngTài liệu tham khảo
Aica AA, Assintel AI (2019) Osservatorio delle competenze digitali, https://competenzedigitali.org/wp-content/uploads/2020/01/Osservatorio_CompetenzeDigitali_2019.pdf
Arregui Pabollet E, Bacigalupo M, Biagi F, Cabrera GM, Caena F, Castano MJ, Centeno MC, Edwards J, Fernandez ME, Gomez GE, Gomez HE, Inamorato Dos Santos A, Kampylis P, Klenert D, López CM, Marschinski R, Pesole A, Punie Y, Tolan S, Torrejon PS, Urzi BC, Vuorikari R (2019) “The changing nature of work and skills in the digital age”, EUR 29823 EN. Publications Office of the European Union, Luxembourg
Azar J, Marinescu IE, Steinbaum M, Taska B (2020) Concentration in US labor markets: evidence from online vacancy data. Labour Economics 66:101886
Beręsewicz M, Pater R (2021) Inferring job vacancies from online job advertisements. Publications Office of the European Union, Luxembourg
Bhumichitr K, Channarukul S, Saejiem N, Jiamthapthaksin R, Nongpong K (2017) Recommender systems for University elective course recommendation, In: 2017 14th International joint conference on computer science and software engineering (JCSSE), pp. 1–5, https://doi.org/10.1109/JCSSE.2017.8025933.
Boselli R, Cesarini M, Mercorio F, Mezzanzanica M (2018) Classifying online job advertisements through machine learning. Futur Gener Comput Syst 86:319–328
Cammeraat E, Squicciarini M (2021) Burning Glass Technologies' data use in policy-relevant analysis: an occupation-level assessment, OECD Science, Technology and Industry Working Papers 2021/05
Carnevale AP, Jayasundera T, Repnikov D (2014) Understanding online job ads data: a technical report, Georgetown University, Technical Report
Cedefop (2019b) The online job vacancy market in the EU: driving forces and emerging trends. Luxembourg: Publications Office. Cedefop research paper; No 72
Cedefop (2018) Mapping the landscape of online job vacancies. Background report: Italy, https://www.cedefop.europa.eu/en/publications-and-resources/
Cedefop (2019a) Online job vacancies and skills analysis. a cedefop pan-european approach, The European Centre for the Development of Vocational Training, Thessaloniki
European Commission (2022) Digital Economy and Society Index (DESI) 2022. Methodological Note, https://ec.europa.eu/newsroom/dae/redirection/document/88557
ETF (2019) Big data for labor market intelligence, European Training Foundation
Eurostat (2021) Eurostat regional yearbook. Publications Office of the European Union, Luxembourg
Fabo B, Kureková L (2022), Methodological issues related to the use of online labour market data, ILO Working Paper 68, International Labour Organization, Geneva
Giambona F, Kahlawi A, Buzzigoli L, Grassini L, Martelli C (2021) Big data analysis and labour market: are web data useful to understand Italian tendenciens and regional gaps. In: XLII Conferenza Italiana di Scienze Regionali
ILO (2001) The public employment service in a changing labour market. International Labour Organization, Geneva
ILO (2012) International standard classification of occupations. International Labour Organization, Geneva
ILO (2020) The feasibility of using big data in anticipating and matching skills needs. International Labour Organization, Geneva
Jiang L, Cheng Y, Yang L, Li J, Yan H, Wang X (2019) A trust-based collaborative filtering algorithm for E-commerce recommendation system. J Ambient Intell Humaniz Comput 10(8):3023–3034. https://doi.org/10.1007/s12652-018-0928-7
Kahlawi A, Buzzigoli L, Grassini L, Martelli C (2022) Skill similarities and dissimilarities in online job vacancy data across Italian Regions, Book of Short Papers - 51st Scientific Meeting of the Italian Statistical Society, pp. 284–291
Koren Y, Bell R, Volinsky C (2009) matrix factorization techniques for recommender systems. Computer (long Beach Calif) 42:30–37. https://doi.org/10.1109/MC.2009.263
Kureková LM, Beblavý M, Thum AE (2014) Using Internet Data to Analyse the Labour Market: A Methodological Enquiry, IZA Discussion Papers Series, IZA DP No. 8555, https://docs.iza.org/dp8555.pdf (URL accessed November 2022)
López Cobo M, Rohman IK, De Prato G, Cardona M, Righi R, Samoili S, Vázquez-Prada Baillet M (2020), ICT specialists in employment. Methodological note, Seville: European Commission, JRC119846
Lovaglio PG, Cesarini M, Mercorio F, Mezzanzanica M (2018) Skills in demand for ICT and statistical occupations: Evidence from web-based job vacancies. Stat Anal Data Min: the ASA Data Sci Journal 2018(11):78–79
Lovaglio PG, Mezzanzanica M, Colombo E (2019) Comparing time series characteristics of official and web job vacancy data. Qual Quant 2020(54):85–98
Lovaglio PG (2021) Do job vacancies variations anticipate employment variations by sector? Some preliminary evidence from Italy", LABOUR. 2021; pp 1–23, www wileyonlinelibrary.com/journal/labr
Macaluso C, Hershbein B, Yeh C (2019) Concentration in U.S. local labor markets: evidence from vacancy and employment data, 2019 Meeting Papers 1336, Society for Economic Dynamics
McGowan A, Andrews D (2015) Skill Mismatch and Public Policy in OECD Countries, OECD Economics Department Working Papers, No. 1210, OECD Publishing, Paris. https://doi.org/10.1787/5js1pzw9lnwk-en
Mezzanzanica M, Mercorio F (2019) Big data for labour market intelligence: An introductory guide (Turin: European Training Foundation). https://www.etf.europa.eu/sites/default/files/2019-06/Big%20data%20for%20LMI.pdf
OECD (2018) Eurostat-OECD Definition of ICT Specialists, Directorate for Science, Technology and Innovation Committee on Digital Economy Policy, DSTI/ICCP/IIS(2015)7/FINAL
OECD (2020) What skills do employers seek in graduates? Using online job posting data to support policy and practice in higher education, OECD Education Working Papers, No. 231
Paleti L, Radha Krishna P, Murthy JVR (2021) Approaching the cold-start problem using community detection based alternating least square factorisation in recommendation systems. Evol Intell 14(2):835–849. https://doi.org/10.1007/s12065-020-00464-y
de Pedraza P, Visintin S, Tijdens K, Kismihók G (2017) Survey vs scraped data: comparing time series properties of web and survey vacancy data. AIAS Working Paper 175, Universiteit van Amsterdam
Turrell A, Thurgood J, Copple D, Djumalieva J, Speigner B (2018) Using online job vacancies to understand the UK labour market from the bottom-up, Bank of England, Staff Working Paper No. 742
Turrell A, Speigner BJ, Djumalieva J, Copple D, Thurgood J (2019), Transforming naturally occurring text data into economic statistics: The Case Of Online Job OJV Postings, Working Paper 25837, NBER