Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network

Yu Guo1, Dongfang Yang2, Yang Zhang3, Licheng Wang4, Kai Wang1
1School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266000, China
2Xi'an Traffic Engineering Institute, Xi'an, 710300, China
3Strategic Research Institute, State Power Investment Corporation, Beijing, China
4School of Information Engineering, Zhejiang University of Technology, Hangzhou, China

Tóm tắt

AbstractThe estimation of state of health (SOH) of a lithium-ion battery (LIB) is of great significance to system safety and economic development. This paper proposes a SOH estimation method based on the SSA-Elman model for the first time. To improve the correlation rates between features and battery capacity, a method combining median absolute deviation filtering and Savitzky–Golay filtering is proposed to process the data. Based on the aging characteristics of the LIB, five features with correlation rates above 0.99 after data processing are then proposed. Addressing the defects of the Elman model, the sparrow search algorithm (SSA) is used to optimize the network parameters. In addition, a data incremental update mechanism is added to improve the generalization of the SSA-Elman model. Finally, the performance of the proposed model is verified based on NASA dataset, and the outputs of the Elman, LSTM and SSA-Elman models are compared. The results show that the proposed method can accurately estimate the SOH, with the root mean square error (RMSE) being as low as 0.0024 and the mean absolute percentage error (MAPE) being as low as 0.25%. In addition, RMSE does not exceed 0.0224 and MAPE does not exceed 2.21% in high temperature and low temperature verifications.

Từ khóa


Tài liệu tham khảo

Xu, H., Du, H., Kang, L., Cheng, Q., Feng, D., & Xia, S. (2021). Constructing straight pores and improving mechanical properties of gangue-based porous ceramics. Journal of Renewable Materials, 9(12), 2129–2141. https://doi.org/10.32604/jrm.2021.016090

Li, S., Hu, W., Cao, D., Dragicevic, T., Huang, Q., Chen, Z., & Blaabjerg, F. (2022). Electric vehicle charging management based on deep reinforcement learning. Journal of Modern Power Systems and Clean Energy, 10(3), 719–730. https://doi.org/10.35833/mpce.2020.000460

Marot, A., Kelly, A., Naglic, M., Barbesant, V., Cremer, J., Stefanov, A., & Viebahn, J. (2022). Perspectives on future power system control centers for energy transition. Journal of Modern Power Systems and Clean Energy, 10(2), 328–344. https://doi.org/10.35833/mpce.2021.000673

Chen, Z., Gao, Z., Chen, J., Wu, X., Fu, X., & Chen, X. (2021). Research on cooperative planning of an integrated energy system considering uncertainty. Power System Protection and Control, 49, 8. https://doi.org/10.19783/j.cnki.pspc.200876 in Chinese.

Xiong, R., Zhang, Y., Wang, J., He, H., Peng, S., & Pecht, M. (2019). Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles. IEEE Transactions on Vehicular Technology, 68(5), 4110–4121. https://doi.org/10.1109/tvt.2018.2864688

Li, D., Yang, D., Li, L., Wang, L., & Wang, K. (2022). Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries. Energies, 15, 6665. https://doi.org/10.3390/en15186665

Liu, Z., Jia, Z., Han, J., Yan, C., & Pecht, M. (2018). A patent analysis of prognostics and health management (PHM) innovations for electrical systems. IEEE Access, 6, 18088–18107. https://doi.org/10.1109/access.2018.2818114

Meriem, S. J., & Ines B. (2020). Lithium-ion battery pack modeling using accurate OCV model application for SoC and SoH estimation. In 2020 IEEE 4th international conference on intelligent energy and power systems (IEPS) (175–179).

Topan, P. A., Ramadan, M. N., Fathoni, G., & Cahyadi, A. I. (2016). State of charge (SOC) and state of health (SOH) estimation on lithium polymer battery via Kalman filter. In International conference on science and technology-computer (ICST) (pp. 93–96).

Li, D., Wang, L., Duan, C., Li, Q., & Wang, K. (2022). Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review. International Journal of Energy Research, 46(8), 10372–10388. https://doi.org/10.1002/er.7905

Cui, Z., Dai, J., Sun, J., Li, D., Wang, L., & Wang, K. (2022). Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery. Mathematical Problems in Engineering. https://doi.org/10.1155/2022/9616124

Coleman, M., Hurley, W. G., & Chin Kwan, L. (2008). An improved battery characterization method using a two-pulse load test. IEEE Transactions on Energy Conversion, 23(2), 708–713. https://doi.org/10.1109/tec.2007.914329

Matias, B., Anres, A., Juan, D. C., Perez, A., & Orchard, M. (2020). Remaining useful life of lithium-ion batteries as a function of the Joule effect. In IEEE international autumn meeting on power, electronics and computing (ROPEC) (pp. 1–6).

Bharat, B., & Mo-Yuen, C. (2015). The state of the art approaches to estimate the state of health (SOH) and state of function (SOF) of lithium ion batteries. In IEEE 13th international conference on industrial informatics (INDIN) (pp. 1302–1307).

Bartlett, A., Marcicki, J., Onori, S., Rizzoni, G., Yang, X. G., & Miller, T. (2015). Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Transactions on Control Systems Technology. https://doi.org/10.1109/tcst.2015.2446947

Saldana, G., Martin, J. I. S., Zamora, I., Asensio, F. J., Onederra, O., & Gonzalez, M. (2020). Empirical electrical and degradation model for electric vehicle batteries. IEEE Access, 8, 155576–155589. https://doi.org/10.1109/access.2020.3019477

Singh, P., Chen, C., Tan, C. M., & Huang, S. C. (2019). Semi-empirical capacity fading model for SoH estimation of Li-ion batteries. Applied Sciences, 9, 15. https://doi.org/10.3390/app9153012

Lai, X., Wang, S., Ma, S., Xie, J., & Zheng, Y. (2020). Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries. Electrochimica Acta. https://doi.org/10.1016/j.electacta.2019.135239

Cui, Z., Kang, L., Li, L., Wang, L., & Wang, K. (2022). A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renewable Energy, 98, 1328–1340. https://doi.org/10.1016/j.renene.2022.08.123

Yu, Z., Huai, R., & Li, H. (2021). CPSO-based parameter-identification method for the fractional-order modeling of lithium-ion batteries. IEEE Transactions on Power Electronics, 36(10), 11109–11123. https://doi.org/10.1109/tpel.2021.3073810

Li, D., Li, S., Zhang, S., Sun, J., Wang, L., & Wang, K. (2022). Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine. Energy. https://doi.org/10.1016/j.energy.2022.123773

Fang, L. L., Li, J. Q., & Peng, B. (2019). Online estimation and error analysis of both SOC and SOH of lithium-ion battery based on DEKF method. Energy Procedia, 158, 3008–3013.

Xia, Z. (2020). Evaluation of parameter variations of equivalent circuit model of lithium-ion battery under different SOH conditions. In IEEE energy conversion congress and exposition (ECCE) (pp. 1519–1523).

Liu, C., Zhang, Y., Sun, J., Cui, Z., & Wang, K. (2022). Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor. International Journal of Energy Research, 463, 3034–3043. https://doi.org/10.1002/er.7360

Cui, Z., Wang, L., Li, Q., & Wang, K. (2021). A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. International Journal of Energy Research, 465, 5423–5440. https://doi.org/10.1002/er.7545

Yi, Z., Zhao, K., Sun, J., & Wang, K. (2022). Prediction of the remaining useful life of supercapacitors. Mathematical Problems in Engineering, 2022, 1–8. https://doi.org/10.1155/2022/7620382

Tian, G., Gu, Y., Shi, D., Fu, J., Yu, Z., & Zhou, Q. (2021). Neural-network-based power system state estimation with extended observability. Journal of Modern Power Systems and Clean Energy, 9(5), 1043–1053. https://doi.org/10.35833/mpce.2020.000362

Jonata, C., Ronaldo, R. B., Milde, M. S., Lira, M. A., Ferreira, A., & Afonso de Carvalho, M. (2021). Power curve modelling for wind turbine using artificial intelligence tools and pre-established inference criteria. Journal of Modern Power Systems and Clean Energy, 9(3), 526–533. https://doi.org/10.35833/mpce.2019.000236

Ming, T., Zhao, J., Wang, X., & Wang, K. (2021). SOC estimation of a lithium battery under high pulse rate condition based on improved LSTM. Power System Protection and Control, 49, 8. https://doi.org/10.19783/j.cnki.pspc.200776 in Chinese.

Gou, B., Xu, Y., & Feng, X. (2020). State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Transactions on Vehicular Technology, 6910, 10854–10867. https://doi.org/10.1109/tvt.2020.3014932

Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol, M., Herring, P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh, W. C., & Braatz, R. D. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 45, 383–391. https://doi.org/10.1038/s41560-019-0356-8

Li, Q., Li, D., Zhao, K., Wang, L., & Wang, K. (2022). State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. Journal of Energy Storage. https://doi.org/10.1016/j.est.2022.104215

Sun, H., Sun, J., Zhao, K., Wang, L., & Wang, K. (2022). Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Mathematical Problems in Engineering, 2022, 1–8. https://doi.org/10.1155/2022/9645892

Liu, D., Zhou, J. B., Liao, H. T., & Yu, P. (2015). A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 456, 915–928. https://doi.org/10.1109/tsmc.2015.2389757

Bian, X., Wei, Z., He, J., Yan, F., & Liu, L. (2021). A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries. IEEE Transactions on Industrial Electronics, 6812, 12173–12184. https://doi.org/10.1109/tie.2020.3044779

Qu, W., Shen, W., & Liu, J. (2021). A joint grey relational analysis based state of health estimation for lithium ion batteries considering temperature effects. Journal of Energy Storage. https://doi.org/10.1016/j.est.2021.103102

Guo, Y., Yu, P., Zhu, C., Zhao, K., Wang, L., & Wang, K. (2022). A state-of-health estimation method considering capacity recovery of lithium batteries. International Journal of Energy Reseach. https://doi.org/10.1002/ER.8671

Liu, C., Li, D., Wang, L., Li, L., & Wang, K. (2022). Strong robustness and high accuracy remaining useful life prediction on supercapacitors. APL Materials, 10(6), 061106. https://doi.org/10.1063/5.0092074

Lin, D., Zhang, X., Wang, L., & Zhao, B. (2022). State of health estimation of lithium-ion batteries based on a novel indirect health indicator. Energy Reports, 8, 606–613. https://doi.org/10.1016/j.egyr.2022.02.220

Goebel, B. S. A. K. (2007). “Battery data set”, NASA ames prognostics data repository. Moffett Field: NASA Ames Research Center. http://ti.arc.nasa.gov/project/prognostic-data-repository.

Gyenes, B., Stevens, D. A., Chevrier, V. L., & Dahn, J. R. (2014). Understanding anomalous behavior in coulombic efficiency measurements on Li-ion batteries. Journal of The Electrochemical Society, 1623, A278–A283. https://doi.org/10.1149/2.0191503jes

Lewerenz, M., Münnix, J., Schmalstieg, J., Käbitz, S., Knips, M., & Sauer, D. U. (2017). Systematic aging of commercial LiFePO4/graphite cylindrical cells including a theory explaining rise of capacity during aging. Journal of Power Sources, 345, 254–263. https://doi.org/10.1016/j.jpowsour.2017.01.133

Li, X., Su, J., Li, Z., Zhao, Z., Zhang, F., Zhang, L., Ye, W., Li, Q., Wang, K., Wang, X., Li, H., Hu, H., Yan, S., Miao, G. X., & Li, Q. (2022). Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 6711, 1145–1153. https://doi.org/10.1016/j.scib.2022.04.001

Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery lifetime prognostics. Joule, 42, 310–346. https://doi.org/10.1016/j.joule.2019.11.018

El Mejdoubi, A., Chaoui, H., Gualous, H., Van Den Bossche, P., Omar, N., & Van Mierlo, J. (2019). Lithium-ion batteries health prognosis considering aging conditions. IEEE Transactions on Power Electronics, 347, 6834–6844. https://doi.org/10.1109/tpel.2018.2873247

Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G., & Howey, D. A. (2016). Degradation diagnostics for lithium ion cells. Journal of Power Sources, 341, 373–386. https://doi.org/10.1016/j.jpowsour.2016.12.011

Hurriyatul Fitriyah, A. S. B. (2019). Outlier detection in object counting based on hue and distance transform using median absolute deviation (MAD). In IEEE international conference on sustainable information engineering and technology (SIET) (pp. 217–222).

Schafer, R. (2011). What is a Savitzky–Golay filter? [Lecture Notes]. IEEE Signal Processing Magazine, 284, 111–117. https://doi.org/10.1109/msp.2011.941097

Sun, W., & Wang, J. (2017). elman neural network soft-sensor model of conversion velocity in polymerization process optimized by Chaos Whale optimization algorithm. IEEE Access, 5, 13062–13076. https://doi.org/10.1109/access.2017.2723610

Chen, Z., Xue, Q., Xiao, R., & Liu, Y. (2019). State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network. IEEE Access, 7, 102662–102678. https://doi.org/10.1109/access.2019.2930680

Cheng, Y. C., Qi, W. M., & Cai, W. Y. (2002). Dynamic properties of Elman and modified Elman neural network. In International conference on machine learning and cybernetics (pp. 637–640).

Ren, G., Cao, Y., Wen, S., Huang, T., & Zeng, Z. (2018). A modified Elman neural network with a new learning rate scheme. Neurocomputing, 286, 11–18. https://doi.org/10.1016/j.neucom.2018.01.046

Padhy, S., & Panda, S. (2021). Application of a simplified Grey Wolf optimization technique for adaptive fuzzy PID controller design for frequency regulation of a distributed power generation system. Protection and Control of Modern Power Systems. https://doi.org/10.1186/s41601-021-00180-4

Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering, 81, 22–34. https://doi.org/10.1080/21642583.2019.1708830

Sun, H., Yang, D., Wang, L., & Wang, K. (2022). A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model. International Journal of Energy Research. https://doi.org/10.1002/ER.8709

Cui, Z., Kang, L., Li, L. W., Wang, L. C., & Wang, K. (2022). A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy, 259, 124933. https://doi.org/10.1016/j.energy.2022.124933