Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
Tóm tắt
Từ khóa
Tài liệu tham khảo
Xu, H., Du, H., Kang, L., Cheng, Q., Feng, D., & Xia, S. (2021). Constructing straight pores and improving mechanical properties of gangue-based porous ceramics. Journal of Renewable Materials, 9(12), 2129–2141. https://doi.org/10.32604/jrm.2021.016090
Li, S., Hu, W., Cao, D., Dragicevic, T., Huang, Q., Chen, Z., & Blaabjerg, F. (2022). Electric vehicle charging management based on deep reinforcement learning. Journal of Modern Power Systems and Clean Energy, 10(3), 719–730. https://doi.org/10.35833/mpce.2020.000460
Marot, A., Kelly, A., Naglic, M., Barbesant, V., Cremer, J., Stefanov, A., & Viebahn, J. (2022). Perspectives on future power system control centers for energy transition. Journal of Modern Power Systems and Clean Energy, 10(2), 328–344. https://doi.org/10.35833/mpce.2021.000673
Chen, Z., Gao, Z., Chen, J., Wu, X., Fu, X., & Chen, X. (2021). Research on cooperative planning of an integrated energy system considering uncertainty. Power System Protection and Control, 49, 8. https://doi.org/10.19783/j.cnki.pspc.200876 in Chinese.
Xiong, R., Zhang, Y., Wang, J., He, H., Peng, S., & Pecht, M. (2019). Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles. IEEE Transactions on Vehicular Technology, 68(5), 4110–4121. https://doi.org/10.1109/tvt.2018.2864688
Li, D., Yang, D., Li, L., Wang, L., & Wang, K. (2022). Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries. Energies, 15, 6665. https://doi.org/10.3390/en15186665
Liu, Z., Jia, Z., Han, J., Yan, C., & Pecht, M. (2018). A patent analysis of prognostics and health management (PHM) innovations for electrical systems. IEEE Access, 6, 18088–18107. https://doi.org/10.1109/access.2018.2818114
Meriem, S. J., & Ines B. (2020). Lithium-ion battery pack modeling using accurate OCV model application for SoC and SoH estimation. In 2020 IEEE 4th international conference on intelligent energy and power systems (IEPS) (175–179).
Topan, P. A., Ramadan, M. N., Fathoni, G., & Cahyadi, A. I. (2016). State of charge (SOC) and state of health (SOH) estimation on lithium polymer battery via Kalman filter. In International conference on science and technology-computer (ICST) (pp. 93–96).
Li, D., Wang, L., Duan, C., Li, Q., & Wang, K. (2022). Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review. International Journal of Energy Research, 46(8), 10372–10388. https://doi.org/10.1002/er.7905
Cui, Z., Dai, J., Sun, J., Li, D., Wang, L., & Wang, K. (2022). Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery. Mathematical Problems in Engineering. https://doi.org/10.1155/2022/9616124
Coleman, M., Hurley, W. G., & Chin Kwan, L. (2008). An improved battery characterization method using a two-pulse load test. IEEE Transactions on Energy Conversion, 23(2), 708–713. https://doi.org/10.1109/tec.2007.914329
Matias, B., Anres, A., Juan, D. C., Perez, A., & Orchard, M. (2020). Remaining useful life of lithium-ion batteries as a function of the Joule effect. In IEEE international autumn meeting on power, electronics and computing (ROPEC) (pp. 1–6).
Bharat, B., & Mo-Yuen, C. (2015). The state of the art approaches to estimate the state of health (SOH) and state of function (SOF) of lithium ion batteries. In IEEE 13th international conference on industrial informatics (INDIN) (pp. 1302–1307).
Bartlett, A., Marcicki, J., Onori, S., Rizzoni, G., Yang, X. G., & Miller, T. (2015). Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Transactions on Control Systems Technology. https://doi.org/10.1109/tcst.2015.2446947
Saldana, G., Martin, J. I. S., Zamora, I., Asensio, F. J., Onederra, O., & Gonzalez, M. (2020). Empirical electrical and degradation model for electric vehicle batteries. IEEE Access, 8, 155576–155589. https://doi.org/10.1109/access.2020.3019477
Singh, P., Chen, C., Tan, C. M., & Huang, S. C. (2019). Semi-empirical capacity fading model for SoH estimation of Li-ion batteries. Applied Sciences, 9, 15. https://doi.org/10.3390/app9153012
Lai, X., Wang, S., Ma, S., Xie, J., & Zheng, Y. (2020). Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries. Electrochimica Acta. https://doi.org/10.1016/j.electacta.2019.135239
Cui, Z., Kang, L., Li, L., Wang, L., & Wang, K. (2022). A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renewable Energy, 98, 1328–1340. https://doi.org/10.1016/j.renene.2022.08.123
Yu, Z., Huai, R., & Li, H. (2021). CPSO-based parameter-identification method for the fractional-order modeling of lithium-ion batteries. IEEE Transactions on Power Electronics, 36(10), 11109–11123. https://doi.org/10.1109/tpel.2021.3073810
Li, D., Li, S., Zhang, S., Sun, J., Wang, L., & Wang, K. (2022). Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine. Energy. https://doi.org/10.1016/j.energy.2022.123773
Fang, L. L., Li, J. Q., & Peng, B. (2019). Online estimation and error analysis of both SOC and SOH of lithium-ion battery based on DEKF method. Energy Procedia, 158, 3008–3013.
Xia, Z. (2020). Evaluation of parameter variations of equivalent circuit model of lithium-ion battery under different SOH conditions. In IEEE energy conversion congress and exposition (ECCE) (pp. 1519–1523).
Liu, C., Zhang, Y., Sun, J., Cui, Z., & Wang, K. (2022). Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor. International Journal of Energy Research, 463, 3034–3043. https://doi.org/10.1002/er.7360
Cui, Z., Wang, L., Li, Q., & Wang, K. (2021). A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. International Journal of Energy Research, 465, 5423–5440. https://doi.org/10.1002/er.7545
Yi, Z., Zhao, K., Sun, J., & Wang, K. (2022). Prediction of the remaining useful life of supercapacitors. Mathematical Problems in Engineering, 2022, 1–8. https://doi.org/10.1155/2022/7620382
Tian, G., Gu, Y., Shi, D., Fu, J., Yu, Z., & Zhou, Q. (2021). Neural-network-based power system state estimation with extended observability. Journal of Modern Power Systems and Clean Energy, 9(5), 1043–1053. https://doi.org/10.35833/mpce.2020.000362
Jonata, C., Ronaldo, R. B., Milde, M. S., Lira, M. A., Ferreira, A., & Afonso de Carvalho, M. (2021). Power curve modelling for wind turbine using artificial intelligence tools and pre-established inference criteria. Journal of Modern Power Systems and Clean Energy, 9(3), 526–533. https://doi.org/10.35833/mpce.2019.000236
Ming, T., Zhao, J., Wang, X., & Wang, K. (2021). SOC estimation of a lithium battery under high pulse rate condition based on improved LSTM. Power System Protection and Control, 49, 8. https://doi.org/10.19783/j.cnki.pspc.200776 in Chinese.
Gou, B., Xu, Y., & Feng, X. (2020). State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Transactions on Vehicular Technology, 6910, 10854–10867. https://doi.org/10.1109/tvt.2020.3014932
Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol, M., Herring, P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh, W. C., & Braatz, R. D. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 45, 383–391. https://doi.org/10.1038/s41560-019-0356-8
Li, Q., Li, D., Zhao, K., Wang, L., & Wang, K. (2022). State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. Journal of Energy Storage. https://doi.org/10.1016/j.est.2022.104215
Sun, H., Sun, J., Zhao, K., Wang, L., & Wang, K. (2022). Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Mathematical Problems in Engineering, 2022, 1–8. https://doi.org/10.1155/2022/9645892
Liu, D., Zhou, J. B., Liao, H. T., & Yu, P. (2015). A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 456, 915–928. https://doi.org/10.1109/tsmc.2015.2389757
Bian, X., Wei, Z., He, J., Yan, F., & Liu, L. (2021). A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries. IEEE Transactions on Industrial Electronics, 6812, 12173–12184. https://doi.org/10.1109/tie.2020.3044779
Qu, W., Shen, W., & Liu, J. (2021). A joint grey relational analysis based state of health estimation for lithium ion batteries considering temperature effects. Journal of Energy Storage. https://doi.org/10.1016/j.est.2021.103102
Guo, Y., Yu, P., Zhu, C., Zhao, K., Wang, L., & Wang, K. (2022). A state-of-health estimation method considering capacity recovery of lithium batteries. International Journal of Energy Reseach. https://doi.org/10.1002/ER.8671
Liu, C., Li, D., Wang, L., Li, L., & Wang, K. (2022). Strong robustness and high accuracy remaining useful life prediction on supercapacitors. APL Materials, 10(6), 061106. https://doi.org/10.1063/5.0092074
Lin, D., Zhang, X., Wang, L., & Zhao, B. (2022). State of health estimation of lithium-ion batteries based on a novel indirect health indicator. Energy Reports, 8, 606–613. https://doi.org/10.1016/j.egyr.2022.02.220
Goebel, B. S. A. K. (2007). “Battery data set”, NASA ames prognostics data repository. Moffett Field: NASA Ames Research Center. http://ti.arc.nasa.gov/project/prognostic-data-repository.
Gyenes, B., Stevens, D. A., Chevrier, V. L., & Dahn, J. R. (2014). Understanding anomalous behavior in coulombic efficiency measurements on Li-ion batteries. Journal of The Electrochemical Society, 1623, A278–A283. https://doi.org/10.1149/2.0191503jes
Lewerenz, M., Münnix, J., Schmalstieg, J., Käbitz, S., Knips, M., & Sauer, D. U. (2017). Systematic aging of commercial LiFePO4/graphite cylindrical cells including a theory explaining rise of capacity during aging. Journal of Power Sources, 345, 254–263. https://doi.org/10.1016/j.jpowsour.2017.01.133
Li, X., Su, J., Li, Z., Zhao, Z., Zhang, F., Zhang, L., Ye, W., Li, Q., Wang, K., Wang, X., Li, H., Hu, H., Yan, S., Miao, G. X., & Li, Q. (2022). Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 6711, 1145–1153. https://doi.org/10.1016/j.scib.2022.04.001
Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery lifetime prognostics. Joule, 42, 310–346. https://doi.org/10.1016/j.joule.2019.11.018
El Mejdoubi, A., Chaoui, H., Gualous, H., Van Den Bossche, P., Omar, N., & Van Mierlo, J. (2019). Lithium-ion batteries health prognosis considering aging conditions. IEEE Transactions on Power Electronics, 347, 6834–6844. https://doi.org/10.1109/tpel.2018.2873247
Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G., & Howey, D. A. (2016). Degradation diagnostics for lithium ion cells. Journal of Power Sources, 341, 373–386. https://doi.org/10.1016/j.jpowsour.2016.12.011
Hurriyatul Fitriyah, A. S. B. (2019). Outlier detection in object counting based on hue and distance transform using median absolute deviation (MAD). In IEEE international conference on sustainable information engineering and technology (SIET) (pp. 217–222).
Schafer, R. (2011). What is a Savitzky–Golay filter? [Lecture Notes]. IEEE Signal Processing Magazine, 284, 111–117. https://doi.org/10.1109/msp.2011.941097
Sun, W., & Wang, J. (2017). elman neural network soft-sensor model of conversion velocity in polymerization process optimized by Chaos Whale optimization algorithm. IEEE Access, 5, 13062–13076. https://doi.org/10.1109/access.2017.2723610
Chen, Z., Xue, Q., Xiao, R., & Liu, Y. (2019). State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network. IEEE Access, 7, 102662–102678. https://doi.org/10.1109/access.2019.2930680
Cheng, Y. C., Qi, W. M., & Cai, W. Y. (2002). Dynamic properties of Elman and modified Elman neural network. In International conference on machine learning and cybernetics (pp. 637–640).
Ren, G., Cao, Y., Wen, S., Huang, T., & Zeng, Z. (2018). A modified Elman neural network with a new learning rate scheme. Neurocomputing, 286, 11–18. https://doi.org/10.1016/j.neucom.2018.01.046
Padhy, S., & Panda, S. (2021). Application of a simplified Grey Wolf optimization technique for adaptive fuzzy PID controller design for frequency regulation of a distributed power generation system. Protection and Control of Modern Power Systems. https://doi.org/10.1186/s41601-021-00180-4
Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering, 81, 22–34. https://doi.org/10.1080/21642583.2019.1708830
Sun, H., Yang, D., Wang, L., & Wang, K. (2022). A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model. International Journal of Energy Research. https://doi.org/10.1002/ER.8709