Tổng hợp một bước và tính chất hấp thụ điện từ của hexaboride đất hiếm entropy cao (HE REB6) và bột tổng hợp composite hexaboride/cacbonat đất hiếm entropy cao (HE REB6/HE REBO3)
Tóm tắt
Xem xét sự xuất hiện của các vấn đề nhiễu điện từ nghiêm trọng, việc phát triển các vật liệu hấp thụ sóng điện từ (EM) với tổn thất điện môi và từ hóa cao và phù hợp với độ trở kháng tối ưu là rất quan trọng. Tuy nhiên, việc hiện thực hóa sự tổn thất đồng bộ của điện môi và từ hóa trong một vật liệu pha đơn vẫn là một thách thức. Trong nghiên cứu này, các bột hexaboride đất hiếm (REB6) entropy cao (HE) với sự kết hợp của tổn thất điện môi và từ hóa đã được thiết kế và tổng hợp thành công thông qua phương pháp khử boron carbide một bước. Ảnh hưởng của các pha trung gian borat entropy cao đến tính chất hấp thụ sóng EM được nghiên cứu. Năm loại gốm HE REB6 bao gồm (Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6, (Ce0.2Eu0.2Sm0.2Er0.2Yb0.2)B6, (Ce0.2Y0.2Eu0.2Er0.2Yb0.2)B6, (Ce0.2Y0.2Sm0.2Eu0.2Yb0.2)B6, và (Nd0.2Y0.2Sm0.2Eu0.2Yb0.2)B6 có cấu trúc tinh thể lập phương kiểu CsCl, và mật độ lý thuyết của chúng dao động từ 4.84 đến 5.25 g/cm3. Bột (Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6, có kích thước hạt trung bình là 1.86 µm, được tìm thấy có tính chất hấp thụ sóng EM tốt nhất trong số các hexaboride này. Giá trị
Từ khóa
Tài liệu tham khảo
Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39: 279–285.
Holloway CL, DeLyser RR, German RF, et al. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans Electromagn Compat 1997, 39: 33–47.
Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140: 696–733.
Jia YJ, Chowdhury MAR, Zhang DJ, et al. Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics. ACS Appl Mater Interfaces 2019, 11: 45862–45874.
Jia ZR, Lin KJ, Wu GL, et al. Recent progresses of high-temperature microwave-absorbing materials. Nano 2018, 13: 1830005.
Wallace JL. Broadband magnetic microwave absorbers: Fundamental limitations. IEEE Trans Magn 1993, 29: 4209–4214.
Adebayo LL, Soleimani H, Yahya N, et al. Recent advances in the development of Fe3O4-based microwave absorbing materials. Ceram Int 2020, 46: 1249–1268.
Wu NN, Liu C, Xu DM, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem Eng 2018, 6: 12471–12480.
Li YJ, Yu M, Yang PG, et al. Enhanced microwave absorption property of Fe nanoparticles encapsulated within reduced graphene oxide with different thicknesses. Ind Eng Chem Res 2017, 56: 8872–8879.
Zhang Y, Huang Y, Zhang TF, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 2015, 27: 2049–2053.
Yan LL, Wang XX, Zhao SC, et al. Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl Mater Interfaces 2017, 9: 11116–11125.
Zhang P, Han XJ, Kang LL, et al. Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv 2013, 3: 12694–12701.
Kumar S, Chatterjee R. Complex permittivity, permeability, magnetic and microwave absorbing properties of Bi3+ substituted U-type hexaferrite. J Magn Magn Mater 2018, 448: 88–93.
Park K, Lee S, Kim C, et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol 2006, 66: 576–584.
Zong M, Huang Y, Ding X, et al. One-step hydrothermal synthesis and microwave electromagnetic properties of RGO/NiFe2O4 composite. Ceram Int 2014, 40: 6821–6828.
Etourneau J, Hagenmuller P. Structure and physical features of the rare-earth borides. Philos Mag B 1985, 52: 589–610.
Longuet-Higgins HC, Roberts MDV. The electronic structure of the borides MB6. Proc R Soc Lond A 1954, 224: 336–347.
Yamazaki M. Group-theoretical treatment of the energy bands in metal borides MeB6. J Phys Soc Jpn 1957, 12: 1–6.
Aronson MC, Sarrao JL, Fisk Z, et al. Fermi surface of the ferromagnetic semimetal, EuB6. Phys Rev B 1999, 59: 4720–4724.
Walch PF, Ellis DE, Mueller FM. Energy bands and bonding in LaB6 and YB6. Phys Rev B 1977, 15: 1859–1866.
Kher SS, Spencer JT. Chemical vapor deposition of metal borides. J Phys Chem Solids 1998, 59: 1343–1351.
Spear KE. Phase behavior and related properties of rare-earth borides. In Phase Diagrams: Materials Science and Technology. Alper AM, Ed. New York: Academic Press, 1976: 91–159.
Mercurio JP, Etourneau J, Naslain R, et al. Electrical and magnetic properties of some rare-earth hexaborides. J Less-Common Met 1976, 47: 175–180.
MacKinnon IDR, Alarco JA, Talbot PC. Metal hexaborides with Sc, Ti or Mn. Model Numer Simul Mater Sci 2013, 3: 158–169.
Bachmann R, Lee KN, Geballe TH, et al. Spin scattering and magnetic ordering in EuB6. J Appl Phys 1970, 41: 1431–1432.
Geballe TH, Matthias BT, Andres K, et al. Magnetic ordering in the rare-earth hexaborides. Science 1968, 160: 1443–1444.
Hacker Jr. H, Shimada Y, Chung KS. Magnetic properties of CeB6, PrB6, EuB6, and GdB6. Phys Stat Sol (a) 1971, 4: 459–465.
Matsubayashi K, Maki M, Tsuzuki T, et al. Parasitic ferromagnetism in a hexaboride? Nature 2002, 420: 143–144.
Matthias BT, Geballe TH, Andres K, et al. Superconductivity and antiferromagnetism in boron-rich lattices. Science 1968, 159: 530.
Young DP, Hall D, Torelli ME, et al. High-temperature weak ferromagnetism in a low-density free-electron gas. Nature 1999, 397: 412–414.
Olsen GH, Cafiero AV. Single-crystal growth of mixed (La, Eu, Y, Ce, Ba, Cs) hexaborides for thermionic emission. J Cryst Growth 1978, 44: 287–290.
Liu Y, Lu WJ, Qin JN, et al. A new route for the synthesis of NdB6 powder from Nd2O3-B4C system. J Alloys Compd 2007, 431: 337–341.
Hasan M, Sugo H, Kisi E. Low temperature carbothermal and boron carbide reduction synthesis of LaB6. J Alloys Compd 2013, 578: 176–182.
Braun JL, Rost CM, Lim M, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv Mater 2018, 30: 1805004.
Zhao ZF, Xiang HM, Dai FZ, et al. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity. J Mater Sci Technol 2019, 35: 2227–2231.
Chen H, Xiang HM, Dai FZ, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J Mater Sci Technol 2019, 35: 1700–1705.
Chen H, Xiang HM, Dai FZ, et al. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J Mater Sci Technol 2020, 36: 134–139.
Zhao ZF, Chen H, Xiang HM, et al. (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: A defective fuorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3. J Mater Sci Technol 2020, 39: 167–172.
Zhao ZF, Chen H, Xiang HM, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. J Adv Ceram 2020, 9: 303–311.
Chen H, Zhao B, Zhao ZF, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J Mater Sci Technol 2020, 47: 216–222.
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 1976, 32: 751–767.
Sarkar A, Loho C, Velasco L, et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans 2017, 46: 12167–12176.
Miles PA, Westphal WB, von Hippel A. Dielectric spectroscopy of ferromagnetic semiconductors. Rev Mod Phys 1957, 29: 279–307.
Green M, Liu Z, Xiang P, et al. Ferric metal-organic framework for microwave absorption. Mater Today Chem 2018, 9: 140–148.
Zhou YC, Dai FZ, Xiang HM, et al. Shear anisotropy: Tuning high temperature metal hexaborides from soft to extremely hard. J Mater Sci Technol 2017, 33: 1371–1377.
Zhou YC, Liu B, Xiang HM, et al. YB6: A ‘ductile’ and soft ceramic with strong heterogeneous chemical bonding for ultrahigh-temperature applications. Mater Res Lett 2015, 3: 210–215.
Grechnev GE, Baranovskiy AE, Fil VD, et al. Electronic structure and bulk properties of MB6 and MB12 borides. Low Temp Phys 2008, 34: 921–929.
Mercurio JP, Etourneau J, Naslain R, et al. Electrical and magnetic properties of some rare-earth hexaborides. J Less-Common Met 1976, 47: 175–180.
Kuneš J, Pickett WE. Kondo and anti-Kondo coupling to local moments in EuB6. Phys Rev B 2004, 69: 165111.
Tian LH, Yan XD, Xu JL, et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A 2015, 3: 12550–12556.
Duan YP, Liu Z, Jing H, et al. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J Mater Chem 2012, 22: 18291–18299.
Ye F, Song Q, Zhang ZC, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv Funct Mater 2018, 28: 1707205.
Prodromakis T, Papavassiliou C. Engineering the Maxwell-Wagner polarization effect. Appl Surf Sci 2009, 255: 6989–6994.
O’Neill D, Bowman RM, Gregg JM. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Appl Phys Lett 2000, 77: 1520–1522.
Wang NN, Wu F, Xie AM, et al. One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band. RSC Adv 2015, 5: 40531–40535.
Fang PH. Cole-Cole diagram and the distribution of relaxation times. J Chem Phys 1965, 42: 3411–3413.
Wang P, Wang XM, Qiao L, et al. High-frequency magnetic properties and microwave absorption performance of oxidized Pr2Co17 flakes/epoxy composite in X-band. J Magn Magn Mater 2018, 468: 193–199.
Li YX, Wang JY, Liu RG, et al. Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite. J Alloys Compd 2017, 724: 1023–1029.
Zhao B, Zhao WY, Shao G, et al. Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 2015, 7: 12951–12960.
Meng FB, Zhao R, Zhan YQ, et al. Preparation and microwave absorption properties of Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres. Appl Surf Sci 2011, 257: 5000–5006.
Wu NN, Liu C, Xu DM, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem Eng 2018, 6: 12471–12480.
Liu Y, Fu YW, Liu L, et al. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl Mater Interfaces 2018, 10: 16511–16520.
Almasi-Kashi M, Mokarian MH, Alikhanzadeh-Arani S. Improvement of the microwave absorption properties in FeNi/PANI nanocomposites fabricated with different structures. J Alloys Compd 2018, 742: 413–420.
Su XL, Ning J, Jia Y, et al. Flower-like MoS2 nanospheres: A promising material with good microwave absorption property in the frequency range of 8.2–12.4 GHz. Nano 2018, 13: 1850084.
Chen JH, Liu M, Yang T, et al. Improved microwave absorption performance of modified SiC in the 2–18 GHz frequency range. CrystEngComm 2017, 19: 519–527.
Farhan S, Wang RM, Li KZ. Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires. Ceram Int 2016, 42: 11330–11340.
Han MK, Yin XW, Hou ZX, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl Mater Interfaces 2017, 9: 11803–11810.
Jiang Y, Chen Y, Liu YJ, et al. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem Eng J 2018, 337: 522–531.
Kumar A, Agarwala V, Singh D. Effect of milling on dielectric and microwave absorption properties of SiC based composites. Ceram Int 2014, 40: 1797–1806.
Hu CG, Mou ZY, Lu GW, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 2013, 15: 13038–13043.
Wan YZ, Xiao J, Li CZ, et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J Magn Magn Mater 2016, 399: 252–259.
Zhang L, Zhu H, Song Y, et al. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers. Mater Sci Eng: B 2008, 153: 78–82.
Zhao DL, Li X, Shen ZM. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J Alloys Compd 2009, 471: 457–460.
Zhu ZT, Sun X, Li GX, et al. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J Magn Magn Mater 2015, 377: 95–103.
Green M, Tian LH, Xiang P, et al. FeP nanoparticles: A new material for microwave absorption. Mater Chem Front 2018, 2: 1119–1125.
Zhang WD, Zhang X, Wu HJ, et al. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J Alloys Compd 2018, 751: 34–42.
Liu PB, Huang Y, Zhang X. Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Compos Sci Technol 2015, 107: 54–60.
She W, Bi H, Wen ZW, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography. ACS Appl Mater Interfaces 2016, 8: 9782–9789.
Yang HB, Ye T, Lin Y, et al. Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19-CoFe2O4 powders. J Alloys Compd 2015, 653: 135–139.
Qing YC, Zhou WC, Luo F, et al. Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption. J Magn Magn Mater 2011, 323: 600–606.
Yang Y, Xu CL, Xia YX, et al. Synthesis and microwave absorption properties of FeCo nanoplates. J Alloys Compd 2010, 493: 549–552.
Ni SB, Sun XL, Wang XH, et al. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater Chem Phys 2010, 124: 353–358.
Wu T, Liu Y, Zeng X, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Interfaces 2016, 8: 7370–7380.
Xiang Z, Song YM, Xiong J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks. Carbon 2019, 142: 20–31.