One-step facile synthesis of graphene oxide/TiO2 composite as efficient photocatalytic membrane for water treatment: Crossflow filtration operation and membrane fouling analysis

Chenyuan Zhu1, Gonggang Liu1, Kai Han1, Hongqi Ye1, Shichao Wei1, Yonghua Zhou1
1State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China

Tài liệu tham khảo

Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599 Aksu, 2005, Application of biosorption for the removal of organic pollutants: a review, Process Biochem., 4, 997, 10.1016/j.procbio.2004.04.008 Sun, 2012, Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants, ACS Appl. Mater. Interfaces, 4, 5466, 10.1021/am301372d Xu, 2005, Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications, Water Environ. Res., 77, 40, 10.2175/106143005X41609 Liu, 2010, Adsorptive removal and oxidation of organic pollutants from water using a novel membrane, Chem. Eng. J., 156, 553, 10.1016/j.cej.2009.04.008 Huang, 2012, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nature Commun., 4, 345 Liu, 2016, Graphene oxide for high-efficiency separation membranes: role of electrostatic interactions, Carbon, 110, 56, 10.1016/j.carbon.2016.09.005 Gao, 2015, SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules, J. Mater. Chem. A, 3, 6649, 10.1039/C5TA00366K Huang, 2014, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Ed., 126, 7049, 10.1002/ange.201401061 Cao, 2014, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, J. Membr. Sci., 469, 272, 10.1016/j.memsci.2014.06.053 Ying, 2014, In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation, RSC Adv., 4, 21425, 10.1039/c4ra01495b Albu, 2007, Self-organized: free-standing TiO2 nanotube membrane for flow-through photocatalytic applications, Nano Lett., 7, 1286, 10.1021/nl070264k Mozia, 2010, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment: a review, Sep. Purif. Technol., 73, 71, 10.1016/j.seppur.2010.03.021 Molinari, 2001, Photocatalytic membrane reactors for degradation of organic pollutants in water, Catal. Today, 67, 273, 10.1016/S0920-5861(01)00314-5 Devi, 2013, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B Environ., 140-141, 559, 10.1016/j.apcatb.2013.04.035 Buddee, 2014, Curcumin-sensitized TiO2 for enhanced photodegradation of dyes under visible light, J. Nanopart. Res., 16, 2336, 10.1007/s11051-014-2336-z Liu, 2016, Highly dispersive nano-TiO2 in situ growing on functional graphene with high photocatalytic activity, J. Nanoparticle Res., 18, 21, 10.1007/s11051-016-3330-4 Zhang, 2011, Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite, Chin. Sci. Bull., 56, 331, 10.1007/s11434-010-3111-x Ke, 2007, High-performance ceramic membranes with a separation layer of metal oxide nanofibers, Adv. Mater., 19, 785, 10.1002/adma.200601984 Xu, 2013, Graphene oxide-TiO2, composite filtration membranes and their potential application for water purification, Carbon, 62, 465, 10.1016/j.carbon.2013.06.035 Peng, 2013, Multifunctional graphene oxide–TiO2, microsphere hierarchical membrane for clean water production, Appl. Catal. B Environ., 138–139, 17 Han, 2015, A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture, Adv. Funct. Mater., 25, 455, 10.1002/adfm.201402815 Liu, 2011, Gram-scale production of graphene oxide-TiO2, nanorod composites: towards high-activity photocatalytic materials, Appl. Catal. B Environ., 106, 76 Yang, 2016, Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide, Appl. Surf. Sci., 380, 249, 10.1016/j.apsusc.2016.01.118 Sun, 2012, Anatase TiO2 nanocrystals with exposed {001 facets on graphene sheets via molecular grafting for enhanced photocatalytic activity, Nanoscale, 4, 613, 10.1039/C1NR11411E Ramadoss, 2013, Improved activity of a graphene-TiO2, hybrid electrode in an electrochemical supercapacitor, Carbon, 63, 434, 10.1016/j.carbon.2013.07.006 Song, 2015, Ultrathin graphene oxide membranes for the removal of humic acid, Sep. Purif. Technol., 144, 162, 10.1016/j.seppur.2015.02.032 Li, 2008, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101, 10.1038/nnano.2007.451 Williams, 2008, TiO2-graphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide, ACS Nano, 2, 1487, 10.1021/nn800251f Song, 1998, Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling, J. Membr. Sci., 139, 183, 10.1016/S0376-7388(97)00263-9 Chang, 2002, Membrane fouling in membrane bioreactors for wastewater treatment, J. Environ. Eng., 128, 1018, 10.1061/(ASCE)0733-9372(2002)128:11(1018) Asatekin, 2007, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives, J. Membr. Sci., 298, 136, 10.1016/j.memsci.2007.04.011 Lee, 1998, Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions, J. Membr. Sci., 149, 181, 10.1016/S0376-7388(98)00177-X Noor Suzana, 2015, Resistance in series model for ultrafiltration xylose reductase from product mixtures, J. Appl. Sci. Agric., 10, 222 Ma, 2007, Mechanism and mathematical models of membrane fouling, Technol. Water Treat., 33, 1