One-step facile synthesis of graphene oxide/TiO2 composite as efficient photocatalytic membrane for water treatment: Crossflow filtration operation and membrane fouling analysis
Tài liệu tham khảo
Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599
Aksu, 2005, Application of biosorption for the removal of organic pollutants: a review, Process Biochem., 4, 997, 10.1016/j.procbio.2004.04.008
Sun, 2012, Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants, ACS Appl. Mater. Interfaces, 4, 5466, 10.1021/am301372d
Xu, 2005, Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications, Water Environ. Res., 77, 40, 10.2175/106143005X41609
Liu, 2010, Adsorptive removal and oxidation of organic pollutants from water using a novel membrane, Chem. Eng. J., 156, 553, 10.1016/j.cej.2009.04.008
Huang, 2012, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nature Commun., 4, 345
Liu, 2016, Graphene oxide for high-efficiency separation membranes: role of electrostatic interactions, Carbon, 110, 56, 10.1016/j.carbon.2016.09.005
Gao, 2015, SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules, J. Mater. Chem. A, 3, 6649, 10.1039/C5TA00366K
Huang, 2014, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Ed., 126, 7049, 10.1002/ange.201401061
Cao, 2014, Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides, J. Membr. Sci., 469, 272, 10.1016/j.memsci.2014.06.053
Ying, 2014, In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation, RSC Adv., 4, 21425, 10.1039/c4ra01495b
Albu, 2007, Self-organized: free-standing TiO2 nanotube membrane for flow-through photocatalytic applications, Nano Lett., 7, 1286, 10.1021/nl070264k
Mozia, 2010, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment: a review, Sep. Purif. Technol., 73, 71, 10.1016/j.seppur.2010.03.021
Molinari, 2001, Photocatalytic membrane reactors for degradation of organic pollutants in water, Catal. Today, 67, 273, 10.1016/S0920-5861(01)00314-5
Devi, 2013, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B Environ., 140-141, 559, 10.1016/j.apcatb.2013.04.035
Buddee, 2014, Curcumin-sensitized TiO2 for enhanced photodegradation of dyes under visible light, J. Nanopart. Res., 16, 2336, 10.1007/s11051-014-2336-z
Liu, 2016, Highly dispersive nano-TiO2 in situ growing on functional graphene with high photocatalytic activity, J. Nanoparticle Res., 18, 21, 10.1007/s11051-016-3330-4
Zhang, 2011, Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite, Chin. Sci. Bull., 56, 331, 10.1007/s11434-010-3111-x
Ke, 2007, High-performance ceramic membranes with a separation layer of metal oxide nanofibers, Adv. Mater., 19, 785, 10.1002/adma.200601984
Xu, 2013, Graphene oxide-TiO2, composite filtration membranes and their potential application for water purification, Carbon, 62, 465, 10.1016/j.carbon.2013.06.035
Peng, 2013, Multifunctional graphene oxide–TiO2, microsphere hierarchical membrane for clean water production, Appl. Catal. B Environ., 138–139, 17
Han, 2015, A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture, Adv. Funct. Mater., 25, 455, 10.1002/adfm.201402815
Liu, 2011, Gram-scale production of graphene oxide-TiO2, nanorod composites: towards high-activity photocatalytic materials, Appl. Catal. B Environ., 106, 76
Yang, 2016, Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide, Appl. Surf. Sci., 380, 249, 10.1016/j.apsusc.2016.01.118
Sun, 2012, Anatase TiO2 nanocrystals with exposed {001 facets on graphene sheets via molecular grafting for enhanced photocatalytic activity, Nanoscale, 4, 613, 10.1039/C1NR11411E
Ramadoss, 2013, Improved activity of a graphene-TiO2, hybrid electrode in an electrochemical supercapacitor, Carbon, 63, 434, 10.1016/j.carbon.2013.07.006
Song, 2015, Ultrathin graphene oxide membranes for the removal of humic acid, Sep. Purif. Technol., 144, 162, 10.1016/j.seppur.2015.02.032
Li, 2008, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101, 10.1038/nnano.2007.451
Williams, 2008, TiO2-graphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide, ACS Nano, 2, 1487, 10.1021/nn800251f
Song, 1998, Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling, J. Membr. Sci., 139, 183, 10.1016/S0376-7388(97)00263-9
Chang, 2002, Membrane fouling in membrane bioreactors for wastewater treatment, J. Environ. Eng., 128, 1018, 10.1061/(ASCE)0733-9372(2002)128:11(1018)
Asatekin, 2007, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives, J. Membr. Sci., 298, 136, 10.1016/j.memsci.2007.04.011
Lee, 1998, Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions, J. Membr. Sci., 149, 181, 10.1016/S0376-7388(98)00177-X
Noor Suzana, 2015, Resistance in series model for ultrafiltration xylose reductase from product mixtures, J. Appl. Sci. Agric., 10, 222
Ma, 2007, Mechanism and mathematical models of membrane fouling, Technol. Water Treat., 33, 1