Phương pháp điện hóa tách lớp-đọng MnO2 trên các tấm graphite nano như một vật liệu chủ hiệu quả cho catot lưu huỳnh hiệu suất cao

Ionics - Tập 26 - Trang 5279-5286 - 2020
Fang Chen1, Linqian Zhan1, Songqing Zhang1, Zhongxin Liang2, Xuliang Fan1, Lin Ma1, Xiaosong Zhou1
1School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong, Institute of Physical Chemistry, Lingnan Normal University, Zhanjiang, China
2Department of Physics, University of Houston, Houston, USA

Tóm tắt

Pin lithium-sulfur (Li-S) với mật độ năng lượng cao là một sự thay thế đầy hứa hẹn cho pin lithium-ion truyền thống. Tuy nhiên, việc ứng dụng pin Li-S bị hạn chế bởi độ dẫn điện thấp của lưu huỳnh và sự khuếch tán của polysulfide trung gian hòa tan. Để giải quyết vấn đề này, chúng tôi đã thành công trong việc chế tạo một hợp chất tấm nano graphite/mangan dioxide (GN/MnO2) làm vật liệu chủ cho lưu huỳnh thông qua phương pháp tách lớp-đọng điện hóa một bước. Kết hợp với độ dẫn điện cao của GN và tương tác mạnh giữa MnO2 và polysulfide, catot GN/MnO2/S thu được có thể thể hiện hiệu suất điện hóa vượt trội và độ ổn định cao trong suốt quá trình nạp-xả. Ngay cả sau 250 chu kỳ, hợp chất GN/MnO2/S vẫn duy trì được dung lượng xả ổn định là 493.5 mAh/g với tỷ lệ giữ lại dung lượng là 68.5%.

Từ khóa

#pin lithium-sulfur #mật độ năng lượng cao #hợp chất tấm nano graphite #điện hóa #polysulfide

Tài liệu tham khảo

Rana M, Ahad SA, Li M, Luo B, Wang L, Gentle I, Knibbe R (2019) Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater 18:289–310 Li X, Pan Z, Li Z, Zhong Y, Wang X, Xu M, Liao Y, Xing L, Qiu Y, Li W (2019) Functionalized N-doped hollow carbon spheres as sulfur host with enhanced electrochemical performances of lithium-sulfur batteries. Ionics 25:503–511 Wang M, Liu G, Wang H, Zhang H, Li X, Zhang H (2018) Anchor and activate sulfide with LiTi2(PO4)2.88F0.12 nano spheres for lithium sulfur battery application. J Mater Chem A 6:7639–7648 Liu G, Feng K, Cui H, Li J, Liu Y, Wang M (2020) MOF derived in-situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable Lithium-sulfur batteries. Chem Eng J 381:122652 Zhang H, Cui H, Li J, Liu Y, Yang Y, Wang M (2019) Frogspawn inspired hollow Fe3C@N–C as an efficient sulfur host for high-rate lithium–sulfur batteries. Nanoscale 11:21532–21541 Rehman S, Khan K, Zhao Y, Hou Y (2017) Nanostructured cathode materials of Lithium-sulfur batteries: progress, challenges and perspectives. J Mater Chem A 5:3014–3038 He ZJ, Tang LB, Wang JL, An CS, Xiao B, Zheng JC (2019) Synthesis and characterization of a sulfur/TiO2 composite for Li-S battery. Ionics 25:9–15 Park J, Yu S-H, Sung Y-E (2018) Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today 18:35–64 Yu M, Ma J, Xie M, Song H, Tian F, Xu S, Zhou Y, Li B, Wu D, Qiu H, Wang R (2017) Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries. Adv Energy Mater 7:1602347 Li S-Y, Wang W-P, Duan H, Guo Y-G (2018) Recent progress on confinement of polysulfides through physical and chemical methods. J Energy Chem 27:1555–1565 Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Edit 54:12886–12890 Li C, Xi Z, Guo D, Chen X, Yin L (2017) Chemical immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 14:1701986 Rehman S, Tang T, Ali Z, Huang X, Hou Y (2017) Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 13:1700087 Li C, Xu Y-T, Zhao B, Jiang L, Chen S-G, Xu J-B, Fu X-Z, Sun R, Wong C-P (2016) Flexible graphene electrothermal films made from electrochemically exfoliated graphite. J Mater Sci 51:1043–1051 Liu Y, Cai X, Luo B, Yan M, Jiang J, Shi W (2016) MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes. Carbon 107:426–432 Fan X, Chen F, Zhang Y, Lin R, Lin C, Zhan L, Xu X, Ma L, Xu L, Zhou X (2020) Constructing a LiPAA interface layer: a new strategy to suppress polysulfide migration and facilitate Li+ transport for high-performance flexible Li–S batteries. Nanotechnology 31:095401 Song Y, Xu J-L, Liu X-X (2014) Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode, J. Power Sources 249:48–58 Du C, He S, Gao X, Chen W (2016) Hierarchical cu@MnO2 core-shell nanowires: a nonprecious-metal catalyst with an excellent catalytic activity toward the reduction of 4-nitrophenol. ChemCatChem 8:2885–2889 Fang J, Yuan YF, Wang LK, Ni HL, Zhu HL, Yang JL, Gui JS, Chen YB, Guo SY (2013) Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries. Electrochim Acta 112:364–370 Wang X, Zhang Z, Qu Y, Lai Y, Li J (2014) Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J Power Sources 256:361–368 Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XW (2014) Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002 Zhou T, Lv W, Li J, Zhou G, Zhao Y, Fan S, Liu B, Li B, Kang F, Yang Q-H (2017) Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ Sci 10:1694–1703 Su Y-S, Manthiram A (2012) A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun 48:8817–8819 Peng H-J, Zhang G, Chen X, Zhang Z-W, Xu W-T, Huang J-Q, Zhang Q (2016) Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew Chem 128:13184–13189 Chen J, Luo B, Chen Q, Li F, Guo Y, Wu T, Peng P, Qin X, Wu G, Cui M, Liu L, Chu L, Jiang B, Li Y, Gong X, Chai Y, Yang Y, Chen Y, Huang W, Liu X, Li M (2020) Localized electrons enhanced ion transport for ultrafast electrochemical energy storage. Adv Mater 32:1905578 Yang W, Yang W, Feng J, Qin X (2017) A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. J Energy Chem 27:813–819 Chen M, Su Z, Jiang K, Pan Y, Zhang Y, Long D (2019) Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li–S battery. J Mater Chem A 7:6250–6258 Zhang M, Meng Q, Ahmad A, Mao L-J, Yan W, Wei Z (2017) Poly (3, 4-ethylenedioxythiophene) coated sulfur for flexible and binder-free cathode of lithium-sulfur batteries. J Mater Chem A 5:17647–17652 Zhang J, Hu H, Li Z, Lou XW (2016) Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew Chem Int Edit 55:3982–3986 Yan L, Niu L, Shen C, Zhang Z, Lin J, Shen F, Gong Y, Li C, Liu X, Xu S (2019) Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M = Fe, Co and Ni) doping. Electrochim Acta 306:529–540 Yuan Z, Peng H-J, Hou T-Z, Huang J-Q, Chen C-M, Wang D-W, Cheng X-B, Wei F, Zhang Q (2016) Powering lithium−sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16:519–527