One-pot surfactant-free modulation of size and functional group distribution in thermoresponsive microgels
Tài liệu tham khảo
Wu, 2013, Thermal responsive microgels as recyclable carriers to immobilize active proteins with enhanced nonaqueous biocatalytic performance, Chem. Commun., 49, 11299, 10.1039/c3cc46161k
Dubey, 2015, Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis, ACS Appl. Mater. Interfaces, 7, 1500, 10.1021/am5063376
Zhang et al., 2014 – Optical Devices Constructed from Multiresponsive M.pdf n.d.
Contreras-Cáceres, 2010, Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced raman scattering detection, Chem. – A Europ. J., 16, 9462, 10.1002/chem.201001261
Kwok, 2019, Correlating the effect of co-monomer content with responsiveness and interfacial activity of soft particles with stability of corresponding smart emulsions, J. Colloid Interface Sci., 546, 293, 10.1016/j.jcis.2019.03.072
Suzuki, 2012, Soft actuators of organized self-oscillating microgels, Soft Matter, 8, 11447, 10.1039/c2sm26477c
Serpe, 2005, Doxorubicin Uptake and Release from Microgel Thin Films, Biomacromolecules, 6, 408, 10.1021/bm049455x
Das, 2006, Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design, Adv. Mater., 18, 80, 10.1002/adma.200501043
Karg, 2019, Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends, Langmuir, 35, 6231, 10.1021/acs.langmuir.8b04304
Agrawal, 2018, Functional Microgels: Recent Advances in Their Biomedical Applications, Small, 14, 1801724, 10.1002/smll.201801724
Arleth, 2005, Volume transition and internal structures of small poly(N -isopropylacrylamide) microgels, J. Polym Sci. B Polym. Phys., 43, 849, 10.1002/polb.20375
Pelton, 2010, Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic, J. Colloid Interface Sci., 348, 673, 10.1016/j.jcis.2010.05.034
Hoare, 2004, Highly pH and temperature responsive microgels functionalized with vinylacetic acid, Macromolecules, 37, 2544, 10.1021/ma035658m
Yin, 2011, Thermo- and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels, Polym. Chem., 2, 363, 10.1039/C0PY00254B
Zhang, 2016, Biological imaging and sensing with multiresponsive microgels, Chem. Mater., 28, 259, 10.1021/acs.chemmater.5b04028
Hoare, 2008, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity, Biomacromolecules, 9, 733, 10.1021/bm701203r
Hoare, 2008, Impact of microgel morphology on functionalized microgel−drug interactions, Langmuir, 24, 1005, 10.1021/la7024507
Scheidegger, 2017, Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography, PCCP, 19, 8671, 10.1039/C6CP07896F
Hoare, 2012, Thermoresponsive nanogels for prolonged duration local anesthesia, Acta Biomater., 8, 3596, 10.1016/j.actbio.2012.06.013
Lindman, 2007, Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. effects of particle size and hydrophobicity, Nano Lett., 7, 914, 10.1021/nl062743+
Hoare, 2008, Characterizing charge and crosslinker distributions in polyelectrolyte microgels, Curr. Opin. Colloid Interface Sci., 13, 413, 10.1016/j.cocis.2008.03.004
Sheikholeslami, 2012, Semi-batch control over functional group distributions in thermoresponsive microgels, Colloid Polym. Sci., 290, 1181, 10.1007/s00396-012-2642-x
Wei, 2016, Tailor-made microgel particles: synthesis and characterization, Colloids Surf., A, 489, 122, 10.1016/j.colsurfa.2015.10.042
Zhou, 1998, Synthesis and volume phase transition of poly(methacrylic acid- co - N -isopropylacrylamide) microgel particles in water, J. Phys. Chem. B, 102, 1364, 10.1021/jp972990p
Rintoul, 2005, Polymerization of ionic monomers in polar solvents: kinetics and mechanism of the free radical copolymerization of acrylamide/acrylic acid, Polymer, 46, 4525, 10.1016/j.polymer.2005.04.005
Lacík, 2009, Propagation rate coefficient of free-radical polymerization of partially and fully ionized methacrylic acid in aqueous solution, Macromolecules, 42, 7753, 10.1021/ma9013516
Dubey, 2015, Preparation and characterization of narrow compositional distribution polyampholytes as potential biomaterials: Copolymers of N -(3-aminopropyl)methacrylamide hydrochloride (APM) and methacrylic acid (MAA), J. Polym. Sci., Part A: Polym. Chem., 53, 353, 10.1002/pola.27377
Virtanen, 2014, Kinetics and particle size control in non-stirred precipitation polymerization of N-isopropylacrylamide, Colloid Polym. Sci., 292, 1743, 10.1007/s00396-014-3208-x
Hoare, 2006, Kinetic prediction of functional group distributions in thermosensitive microgels, J. Phys. Chem. B, 110, 20327, 10.1021/jp0643451
Acciaro, 2011, Preparation of monodisperse poly(N -isopropylacrylamide) microgel particles with homogenous cross-link density distribution, Langmuir, 27, 7917, 10.1021/la2010387
Karanastasis, 2019, Quantification of functional crosslinker reaction kinetics via super-resolution microscopy of swollen microgels, Soft Matter, 15, 9336, 10.1039/C9SM01618J
Smith, 2011, Network deconstruction reveals network structure in responsive microgels, J. Phys. Chem. B, 115, 3761, 10.1021/jp111634k
Hoare, 2004, Functional group distributions in carboxylic acid containing poly(N -isopropylacrylamide) microgels, Langmuir, 20, 2123, 10.1021/la0351562
Kratz, 2000, Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels, Colloids Surf., A, 170, 137, 10.1016/S0927-7757(00)00490-8
Burmistrova A, Richter M, Eisele M, Üzüm C, Von Klitzing R. The Effect of Co-Monomer Content on the Swelling/Shrinking and Mechanical Behaviour of Individually Adsorbed PNIPAM Microgel Particles. Polymers 2011;3. https://doi.org/10.3390/polym3041575.
Sun, 2018, Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly(N -acryloylglycinamide- co -methacrylic acid), Polym. Chem., 9, 3667, 10.1039/C8PY00733K
Pelton, 1986, Preparation of aqueous latices with N-isopropylacrylamide, Colloids Surf., 20, 247, 10.1016/0166-6622(86)80274-8
Tagit, 2008, Probing the morphology and nanoscale mechanics of single poly(N-isopropylacrylamide) microgels across the lower-critical-solution temperature by atomic force microscopy, Small, 4, 119, 10.1002/smll.200700260
Zeiser, 2012, Linearly thermoresponsive core–shell microgels: towards a new class of nanoactuators, Polymer, 53, 6096, 10.1016/j.polymer.2012.10.001
Woodward, 2000, The interaction of sodium dodecyl sulphate with colloidal microgel particles, Eur. Polym. J., 36, 1355, 10.1016/S0014-3057(99)00207-4
Tam, 1994, Interaction of surfactants with Poly(N-isopropylacrylamide) microgel latexes, Langmuir, 10, 418, 10.1021/la00014a015
Jones, 2000, Synthesis and characterization of multiresponsive core−shell microgels, Macromolecules, 33, 8301, 10.1021/ma001398m
Horecha, 2010, Ordered surface structures from PNIPAM-based loosely packed microgel particles, Soft Matter, 6, 5980, 10.1039/c0sm00634c
Pelton R, Hoare T. Microgels and Their Synthesis: An Introduction. Wiley Online Library 2011. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527632992.ch1 (accessed November 19, 2019).
McPhee, 1993, Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate, J. Colloid Interface Sci., 156, 24, 10.1006/jcis.1993.1075
Scott, 2019, The role of pH, ionic strength and monomer concentration on the terpolymerization of 2-acrylamido-2-methylpropane sulfonic acid, acrylamide and acrylic acid, Polymer, 177, 214, 10.1016/j.polymer.2019.06.006
Kardos, 2019, How small can poly(N-isopropylacrylamide) nanogels be prepared by controlling the size with surfactant?, J. Colloid Interface Sci., 557, 793, 10.1016/j.jcis.2019.09.053
Bergmann, 2018, Super-resolution optical microscopy resolves network morphology of smart colloidal microgels, PCCP, 20, 5074, 10.1039/C7CP07648G
Otto, 2020, Resolving the internal morphology of core–shell microgels with super-resolution fluorescence microscopy, Nanoscale Adv., 2, 323, 10.1039/C9NA00670B
Karanastasis, 2018, 3D mapping of nanoscale crosslink heterogeneities in microgels, Mater. Horiz., 5, 1130, 10.1039/C8MH00644J