One-pot surfactant-free modulation of size and functional group distribution in thermoresponsive microgels

Journal of Colloid and Interface Science - Tập 568 - Trang 264-272 - 2020
Apostolos A. Karanastasis1, Gopal S. Kenath1, Dustin Andersen1, Demosthenes Fokas2, Chang Y. Ryu3, Chaitanya K. Ullal1
1Department of Materials Science and Engineering Rensselaer Polytechnic Institute, Troy, NY, USA
2Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
3Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA

Tài liệu tham khảo

Wu, 2013, Thermal responsive microgels as recyclable carriers to immobilize active proteins with enhanced nonaqueous biocatalytic performance, Chem. Commun., 49, 11299, 10.1039/c3cc46161k Dubey, 2015, Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis, ACS Appl. Mater. Interfaces, 7, 1500, 10.1021/am5063376 Zhang et al., 2014 – Optical Devices Constructed from Multiresponsive M.pdf n.d. Contreras-Cáceres, 2010, Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced raman scattering detection, Chem. – A Europ. J., 16, 9462, 10.1002/chem.201001261 Kwok, 2019, Correlating the effect of co-monomer content with responsiveness and interfacial activity of soft particles with stability of corresponding smart emulsions, J. Colloid Interface Sci., 546, 293, 10.1016/j.jcis.2019.03.072 Suzuki, 2012, Soft actuators of organized self-oscillating microgels, Soft Matter, 8, 11447, 10.1039/c2sm26477c Serpe, 2005, Doxorubicin Uptake and Release from Microgel Thin Films, Biomacromolecules, 6, 408, 10.1021/bm049455x Das, 2006, Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design, Adv. Mater., 18, 80, 10.1002/adma.200501043 Karg, 2019, Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends, Langmuir, 35, 6231, 10.1021/acs.langmuir.8b04304 Agrawal, 2018, Functional Microgels: Recent Advances in Their Biomedical Applications, Small, 14, 1801724, 10.1002/smll.201801724 Arleth, 2005, Volume transition and internal structures of small poly(N -isopropylacrylamide) microgels, J. Polym Sci. B Polym. Phys., 43, 849, 10.1002/polb.20375 Pelton, 2010, Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic, J. Colloid Interface Sci., 348, 673, 10.1016/j.jcis.2010.05.034 Hoare, 2004, Highly pH and temperature responsive microgels functionalized with vinylacetic acid, Macromolecules, 37, 2544, 10.1021/ma035658m Yin, 2011, Thermo- and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels, Polym. Chem., 2, 363, 10.1039/C0PY00254B Zhang, 2016, Biological imaging and sensing with multiresponsive microgels, Chem. Mater., 28, 259, 10.1021/acs.chemmater.5b04028 Hoare, 2008, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity, Biomacromolecules, 9, 733, 10.1021/bm701203r Hoare, 2008, Impact of microgel morphology on functionalized microgel−drug interactions, Langmuir, 24, 1005, 10.1021/la7024507 Scheidegger, 2017, Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography, PCCP, 19, 8671, 10.1039/C6CP07896F Hoare, 2012, Thermoresponsive nanogels for prolonged duration local anesthesia, Acta Biomater., 8, 3596, 10.1016/j.actbio.2012.06.013 Lindman, 2007, Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. effects of particle size and hydrophobicity, Nano Lett., 7, 914, 10.1021/nl062743+ Hoare, 2008, Characterizing charge and crosslinker distributions in polyelectrolyte microgels, Curr. Opin. Colloid Interface Sci., 13, 413, 10.1016/j.cocis.2008.03.004 Sheikholeslami, 2012, Semi-batch control over functional group distributions in thermoresponsive microgels, Colloid Polym. Sci., 290, 1181, 10.1007/s00396-012-2642-x Wei, 2016, Tailor-made microgel particles: synthesis and characterization, Colloids Surf., A, 489, 122, 10.1016/j.colsurfa.2015.10.042 Zhou, 1998, Synthesis and volume phase transition of poly(methacrylic acid- co - N -isopropylacrylamide) microgel particles in water, J. Phys. Chem. B, 102, 1364, 10.1021/jp972990p Rintoul, 2005, Polymerization of ionic monomers in polar solvents: kinetics and mechanism of the free radical copolymerization of acrylamide/acrylic acid, Polymer, 46, 4525, 10.1016/j.polymer.2005.04.005 Lacík, 2009, Propagation rate coefficient of free-radical polymerization of partially and fully ionized methacrylic acid in aqueous solution, Macromolecules, 42, 7753, 10.1021/ma9013516 Dubey, 2015, Preparation and characterization of narrow compositional distribution polyampholytes as potential biomaterials: Copolymers of N -(3-aminopropyl)methacrylamide hydrochloride (APM) and methacrylic acid (MAA), J. Polym. Sci., Part A: Polym. Chem., 53, 353, 10.1002/pola.27377 Virtanen, 2014, Kinetics and particle size control in non-stirred precipitation polymerization of N-isopropylacrylamide, Colloid Polym. Sci., 292, 1743, 10.1007/s00396-014-3208-x Hoare, 2006, Kinetic prediction of functional group distributions in thermosensitive microgels, J. Phys. Chem. B, 110, 20327, 10.1021/jp0643451 Acciaro, 2011, Preparation of monodisperse poly(N -isopropylacrylamide) microgel particles with homogenous cross-link density distribution, Langmuir, 27, 7917, 10.1021/la2010387 Karanastasis, 2019, Quantification of functional crosslinker reaction kinetics via super-resolution microscopy of swollen microgels, Soft Matter, 15, 9336, 10.1039/C9SM01618J Smith, 2011, Network deconstruction reveals network structure in responsive microgels, J. Phys. Chem. B, 115, 3761, 10.1021/jp111634k Hoare, 2004, Functional group distributions in carboxylic acid containing poly(N -isopropylacrylamide) microgels, Langmuir, 20, 2123, 10.1021/la0351562 Kratz, 2000, Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels, Colloids Surf., A, 170, 137, 10.1016/S0927-7757(00)00490-8 Burmistrova A, Richter M, Eisele M, Üzüm C, Von Klitzing R. The Effect of Co-Monomer Content on the Swelling/Shrinking and Mechanical Behaviour of Individually Adsorbed PNIPAM Microgel Particles. Polymers 2011;3. https://doi.org/10.3390/polym3041575. Sun, 2018, Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly(N -acryloylglycinamide- co -methacrylic acid), Polym. Chem., 9, 3667, 10.1039/C8PY00733K Pelton, 1986, Preparation of aqueous latices with N-isopropylacrylamide, Colloids Surf., 20, 247, 10.1016/0166-6622(86)80274-8 Tagit, 2008, Probing the morphology and nanoscale mechanics of single poly(N-isopropylacrylamide) microgels across the lower-critical-solution temperature by atomic force microscopy, Small, 4, 119, 10.1002/smll.200700260 Zeiser, 2012, Linearly thermoresponsive core–shell microgels: towards a new class of nanoactuators, Polymer, 53, 6096, 10.1016/j.polymer.2012.10.001 Woodward, 2000, The interaction of sodium dodecyl sulphate with colloidal microgel particles, Eur. Polym. J., 36, 1355, 10.1016/S0014-3057(99)00207-4 Tam, 1994, Interaction of surfactants with Poly(N-isopropylacrylamide) microgel latexes, Langmuir, 10, 418, 10.1021/la00014a015 Jones, 2000, Synthesis and characterization of multiresponsive core−shell microgels, Macromolecules, 33, 8301, 10.1021/ma001398m Horecha, 2010, Ordered surface structures from PNIPAM-based loosely packed microgel particles, Soft Matter, 6, 5980, 10.1039/c0sm00634c Pelton R, Hoare T. Microgels and Their Synthesis: An Introduction. Wiley Online Library 2011. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527632992.ch1 (accessed November 19, 2019). McPhee, 1993, Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate, J. Colloid Interface Sci., 156, 24, 10.1006/jcis.1993.1075 Scott, 2019, The role of pH, ionic strength and monomer concentration on the terpolymerization of 2-acrylamido-2-methylpropane sulfonic acid, acrylamide and acrylic acid, Polymer, 177, 214, 10.1016/j.polymer.2019.06.006 Kardos, 2019, How small can poly(N-isopropylacrylamide) nanogels be prepared by controlling the size with surfactant?, J. Colloid Interface Sci., 557, 793, 10.1016/j.jcis.2019.09.053 Bergmann, 2018, Super-resolution optical microscopy resolves network morphology of smart colloidal microgels, PCCP, 20, 5074, 10.1039/C7CP07648G Otto, 2020, Resolving the internal morphology of core–shell microgels with super-resolution fluorescence microscopy, Nanoscale Adv., 2, 323, 10.1039/C9NA00670B Karanastasis, 2018, 3D mapping of nanoscale crosslink heterogeneities in microgels, Mater. Horiz., 5, 1130, 10.1039/C8MH00644J