Phương pháp tổng hợp thủy nhiệt một bước của cấu trúc dị thể hình hoa Zif-67@NiCo-LDH làm vật liệu anode cho pin lithium-ion

Ionics - Tập 29 - Trang 1741-1749 - 2023
Qiming Xiong1,2, Xiongzhuang Li1, Mulan Zhou1, Rentian Chen1,2, Cheng Sun1, Yanyan Zhou1, Sijia Wang1, Xiangyun Qiu3, Meijia Song1, Tao Wei1
1School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, China
2Institute of Mechanics and Energy, National Research Ogarev Mordovia State University, Saransk, Russia
3Power & Energy Storage System Research Center, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, China

Tóm tắt

Hydroxide đôi lớp nickel cobalt (NiCo-LDH) dạng nanosheet đã thu hút được nhiều sự quan tâm trong lĩnh vực pin lithium-ion (LIB) nhờ khả năng lưu trữ năng lượng cao và chi phí thấp. Tuy nhiên, tính ổn định chu kỳ thấp đã hạn chế khả năng ứng dụng thực tế của chúng. Trong nghiên cứu này, chúng tôi giới thiệu một phương pháp tổng hợp thủy nhiệt đơn giản một bước để chế tạo cấu trúc dị thể hình hoa Zif-67@NiCo-LDH mới làm vật liệu anode. Cấu trúc, hình thái và thành phần của vật liệu đã được nghiên cứu bằng XRD, SEM, TEM, XPS, EDX và phổ Raman. Các thử nghiệm điện hóa cũng đã được thực hiện. Zif-67@NiCo-LDH đồng thời kế thừa tính ổn định chu kỳ của Zif-67 và khả năng lưu trữ năng lượng cao của NiCo-LDH, điều này cải thiện đáng kể tính dẫn điện và độ nguyên vẹn cấu trúc dưới hiệu ứng hợp tác của các cấu trúc dị thể hình hoa và thành phần, đồng thời thể hiện hiệu suất điện hóa tốt. Công trình này có thể mở đường cho việc thiết kế các vật liệu dị thể với hydroxide đôi lớp cho nhiều công nghệ lưu trữ năng lượng khác.

Từ khóa

#hydroxide đôi lớp #nickel cobalt #pin lithium-ion #Zif-67 #cấu trúc dị thể #hiệu suất điện hóa

Tài liệu tham khảo

Balasubramaniam S, Mohanty A, Balasingam SK et al (2020) Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nanomicro Lett 12(1):85 Jin H, Li J, Yuan Y et al (2018) Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv Energy Mater 8(23):1801007 Lai H, Wu Q, Zhao J et al (2016) Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energ & Environ Sci 9(6):2053–2060 Radhakrishnan S, Sekar R, Rajasekhar B et al (2021) Electrodeposited partially oxidized Bi & NiCo alloy based thin films for aqueous hybrid high energy microcapacitor. J Alloy Compd 888:161453 Salari M, Cooper BG, Zhang H et al (2017) Synthesis of an environmentally friendly alkyl carbonate electrolyte based on glycerol for lithium-ion supercapacitor operation at 100 °C. Adv Sustainable Syst 1(8):1700067 Lu J, Wang Z, Zhang Q et al (2023) The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries. Chinese J of Chem Eng. https://doi.org/10.1016/j.cjche.2023.01.011 Zhang C, Zhang L, Yu G (2020) Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage. Acc Chem Res 53(8):1648–1659 Wei T, Zhang Z, Zhu Z et al (2019) Recycling of waste plastics and scalable preparation of Si/CNF/C composite as anode material for lithium-ion batteries. Ionics 25(4):1523–1529 Zhang ZH, Wei T, Lu JH et al (2021) Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: a review. Int J Min Met Mater 28(10):1565–1583 Wei T, Sun C, Wang S et al (2022) Editorial: Advanced electrochemical energy devices. Front Chem 10:1121482 Chen Z, Belharouak I, Sun YK et al (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23(8):959–969 Jin Y, Zhu B, Lu Z et al (2017) Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 7(23):1700715 Lu L, Han X, Li J et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288 Ma S, Jiang M, Tao P et al (2018) Temperature effect and thermal impact in lithium-ion batteries: a review. Prog Nat Sci 28(6):653–666 Wei T, Wang Z, Zhang Q et al (2022) Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review. CrystEngComm 24(28):5014–5030 Wei C, Yu C, Wang R et al (2023) Sb and O dual doping of chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries. J Power Sources 559:232659 Wei T, Zhang ZH, Zhang Q et al (2021) Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int J Min Met Mater 28(10):1636–1646 Wei T, Lu J, Wang M et al (2023) MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A Review. Chinese J Chem. https://doi.org/10.1002/cjoc.202200816 Mehek R, Iqbal N, Noor T et al (2021) Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 11(47):29247–29266 Zhu JP, Wang XH, Zuo XX (2019) The application of metal-organic frameworks in electrode materials for lithium-ion and lithium-sulfur batteries. R Soc Open Sci 6(7):190634 Yuan J, Chen C, Hao Y et al (2017) SnO2/polypyrrole hollow spheres with improved cycle stability as lithium-ion battery anodes. J Alloy Comp 691:34–39 Wang J, Kirlikovali KO, Kim SY et al (2022) Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm 24(16):2925–2947 Wei T, Zhao Y, Chen R et al (2022) Metal organic framework (MOF)–derived iron oxide@nitrogen–doped carbon nanocomposites as anode materials for lithium-ion batteries. Ionics 28(9):4185–4194 Song F, Zhang R, Zhang X et al (2020) Ni-Co double hydroxide grown on graphene oxide for enhancing lithium ion storage. Energ Fuel 34(10):13032–13037 Bailmare DB, Deshmukh KA, Sivaraman P et al (2019) Directly grown Sr–Co layered double hydroxide (LDH) entangled two dimensional nanosheet film with superior performances. Electrochim Acta 328:135063 Candu N, Paul D, Marcu IC et al (2018) New organic-inorganic LDH composites: synthesis, characterization and catalytic behavior in the green epoxidation of α, β-unsaturated esters. Inorg Chim Acta 475:127–132 Ghani M, Ghoreishi SM, Azamati M (2018) Magnesium-aluminum-layered double hydroxide-graphene oxide composite mixed-matrix membrane for the thin-film microextraction of diclofenac in biological fluids. J Chromatogr A 1575:11–17 Zhou H, Wu F, Fang L et al (2020) Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor. In J Hydrogen Energy 45(23):13080–13089 Hsu YT, Wu JCS, Nguyen VH (2019) MgxAl-LDHs layered double hydroxides catalysts for boosting catalytic synthesis of biodiesel and conversion of by-product into valuable glycerol carbonate. J Taiwan Inst Chem Eng 104:219–226 Nagaraju G, Raju GS, Ko YH et al (2016) Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8(2):812–825 Tao Y, Ruiyi L, Lin Z et al (2015) Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochim Acta 176:1153–1164 Lai F, Miao YE, Zuo L et al (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12(24):3235–3244 Zhou T, Shen J, Wang Z et al (2020) Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv Funct Mater 30(14):1909159 Li B, Cao H, Shao J et al (2011) Improved performances of beta-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chem Commun 47(11):3159–3161 Wang X, Li X, Du X et al (2017) Controllable synthesis of NiCo LDH nanosheets for fabrication of high-performance supercapacitor electrodes. Electroanal 29(5):1286–1293 Nie Y, Li W, Pan J et al (2018) Preparation of 3D spherical Ni/Al LDHs with significantly enhanced electrochemical performance as a superior cathode material for Ni/MH batteries. Electrochim Acta 289:333–341 Zhang Q, Wang S, Liu Y et al (2023) UiO-66-NH2@67 core–shell metal–organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries. Energy Technol. https://doi.org/10.1002/ente.202201438 Wei T, Lu J, Zhang P et al (2022) Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chin Chem Lett. https://doi.org/10.1002/ente.202201438 Li H, Jin Q, Zhao J et al (2020) Rational synthesis of a ZIF-67@Co-Ni LDH heterostructure and derived heterogeneous carbon-based framework as a highly efficient multifunctional sulfur host. Dalton Trans 49(36):12686–12694 Wei T, Wang Z, Zhang M et al (2022) Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Mater Today Commun 31:103518 Wei T, Zhang ZH, Wang ZM et al (2020) Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl Energy Mater 3(9):9428–9435 Zhang Q, Wei T, Lu J et al (2022) The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries. J Electroanal Chem 926:116935 Zhu L, Han T, Ding Y et al (2022) A metal–organic-framework derived NiFe2O4@NiCo-LDH nanocube as high-performance lithium-ion battery anode under different temperatures. Appl Surf Sci 599:153953 Ramachandran R, Thangavel S, Minzhang L et al (2021) Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator. Chemosphere 271:128509 Xie J, Zhang Y, Han Y et al (2016) High-capacity molecular scale conversion anode enabled by hybridizing cluster-type framework of high loading with amino-functionalized graphene. ACS Nano 10(5):5304–5313 Wei T, Zhang M, Wu P et al (2017) POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy 34:205–214 Shi Y, Li J, Zhang B et al (2021) Tuning electronic structure of CoNi LDHs via surface Fe doping for achieving effective oxygen evolution reaction. Appl Surf Sci 565:150506 Mai L, Li H, Zhao Y et al (2013) Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci Rep 3(1):1718 Wang F, Ye Y, Wang Z et al (2021) MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries. Ionics 27(10):4197–4204 Jin C, Liu T, Sheng O et al (2021) Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat Energy 6(4):378–387 Shi L, Chen Y, He R et al (2018) Graphene-wrapped CoNi-layered double hydroxide microspheres as a new anode material for lithium-ion batteries. Phys Chem Chem Phys 20(24):16437–16443 Song L, Zhu S, Tong L et al (2021) MXene quantum dot rivet reinforced Ni–Co LDH for boosting electrochemical activity and cycling stability. Mater Adv 2(17):5622–5628 Yu W, Deng N, Cheng K et al (2021) Advances in preparation methods and mechanism analysis of layered double hydroxide for lithium-ion batteries and lithium-sulfur batteries. J Energy Chem 58:472–499 Yang P, Jing C, Liu JC et al (2020) Controllable crystal growth of a NiCo-LDH nanostructure anchored onto KCu7S4 nanowires via a facile solvothermal method for supercapacitor application. CrystEngComm 22(9):1602–1609 Liao Y, He J, Yi L et al (2021) Electrochemical kinetic study of a polyimide anode for lithium-ion batteries using the AC impedance technique. ACS Appl Energy Mater 4(5):5348–5358