One-pot hydrothermal synthesis and characterization of magnetic nanocomposite of titania-deposited copper ferrite/ferrite oxide for photocatalytic decomposition of methylene blue dye
Tóm tắt
The pure titania (TiO2) and the heterogeneous ternary magnetic nanocomposite of copper ferrite/ferrite oxide (CuFe2O4/Fe2O3) deposited by titanium dioxide (TiO2) were fabricated using a facile one-pot hydrothermal synthesis for the photocatalytic decomposition of methylene blue (MB) dye, under visible light. The nanocomposite was encoded as TCF in this work, where T stands for TiO2, C for CuFe2O4 and F for Fe2O3. Various techniques such as powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, diffuse reflectance spectroscopy, nitrogen physisorption, and vibrational sample magnetometry (VSM) were used to characterize the prepared samples. The PXRD data showed that the samples had pure anatase structure and the average crystal size of anatase TiO2 in the pure titania and ternary nanocomposite were calculated 147 Å and 135 Å, respectively. The nitrogen physisorption analysis data showed that the pore diameter was increased from 10.6 nm in pure titania to 16.0 nm in TCF. The pore volume was also increased from 0.316 in titania to 0.383 cm3/g in TCF sample. It also increased the typical magnitude of the mesopores’ diameter and volume per weight but it reduced the specific surface area of the samples. The VSM analysis of the ternary nanocomposite showed a considerable magnetic property of the sample (1.99 emu/g), qualifying it as a paramagnetic material. The photocatalytic decomposition efficiency of MB reached 77% and 68% in the presence of pure titania and TCF ternary nanocomposite, after 240-min exposure by the visible light. Active species trapping experiments showed that the major active species responsible for the photodecomposition of MB in the presence of TCF are
Từ khóa
Tài liệu tham khảo
Kümmerer, K., Dionysiou, D.D., Olsson, O., Fatta-Kassinos, D.: A path to clean water. Science 361(6399), 222–224 (2018). https://doi.org/10.1126/science.aau2405
Buthelezi, S.P., Olaniran, A.O., Pillay, B.: Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules 17(12), 14260–14274 (2012). https://doi.org/10.3390/molecules171214260
Yaseen, D.A., Scholz, M.: Treatment of synthetic textile wastewater containing dye mixtures with microcosms. Environ. Sci. Pollut. Res. 25(2), 1980–1997 (2018). https://doi.org/10.1007/s11356-017-0633-7
http://molview.org
Attia, A.A., Girgis, B.S., Fathy, N.A.: Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies. Dyes Pigments 76(1), 282–289 (2008). https://doi.org/10.1016/j.dyepig.2006.08.039
Dewachter, P., Mouton-Faivre, C., Tréchot, P., Lieu, J.C., Mertes, P.M.: Severe anaphylactic shock with methylene blue instillation. Anesth. Analg. 101(1), 149–150 (2005). https://doi.org/10.1213/01.ane.0000153497.60047.80
Jadhav, S.V., Bringas, E., Yadav, G.D., Rathod, V.K., Ortiz, I., Marathe, K.V.: Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J. Environ. Manag. 162, 306–325 (2015). https://doi.org/10.1016/j.jenvman.2015.07.020
Kabra, K., Chaudhary, R., Sawhney, R.L.: Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind. Eng. Chem. Res. 43(24), 7683–7696 (2004). https://doi.org/10.1021/ie0498551
Young, I.G., Lipták, B.G.: Analytical Instrumentation. Routledge, New York (1994). https://doi.org/10.1201/9781315137469
Wang, J.L., Xu, L.J.: Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42(3), 251–325 (2012). https://doi.org/10.1080/10643389.2010.507698
Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A.: Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137 (2016). https://doi.org/10.25112/rco.v1i0.1706
Delsouz Khaki, M.R., Shafeeyan, M.S., Abdul Raman, A.A., Wan Daud, W.M.A.: Application of doped photocatalysts for organic pollutant degradation—a review. J. Environ. Manag. 198, 78–94 (2017). https://doi.org/10.1016/j.jenvman.2017.04.099
Rauf, M.A., Meetani, M.A., Hisaindee, S.: An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276(1–3), 13–27 (2011). https://doi.org/10.1016/j.desal.2011.03.071
Malato, S., Maldonado, M.I., Fernández-Ibáñez, P., Oller, I., Polo, I., Sánchez-Moreno, R.: Decontamination and disinfection of water by solar photocatalysis: the pilot plants of the Plataforma Solar de Almeria. Mater. Sci. Semicond. Process. 42, 15–23 (2016). https://doi.org/10.1016/j.mssp.2015.07.017
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995). https://doi.org/10.1021/cr00033a004
Yu, S., Lee, B., Lee, M., Cho, I.-H., Chang, S.-W.: Decomposition and mineralization of cefaclor by ionizing radiation: kinetics and effects of the radical scavengers. Chemosphere 71(11), 2106–2112 (2008). https://doi.org/10.1016/j.chemosphere.2008.01.020
Ahmad, R., Ahmad, Z., Khan, A.U., Mastoi, N.R., Aslam, M., Kim, J.: Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications. J. Environ. Chem. Eng. 4(4A), 4143–4164 (2016). https://doi.org/10.1016/j.jece.2016.09.009
Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107(7), 2891–2959 (2007). https://doi.org/10.1021/cr0500535
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, K.W.J., Byrne, J.A., O’Shea, K., Entezari, M.H., Dionysiou, D.D.: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331–349 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036
Nakata, K., Ochiai, T., Murakami, T., Fujishima, A.: Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim. Acta 84, 103–111 (2012). https://doi.org/10.1016/j.electacta.2012.03.035
Wu, L., Mendoza-garcia, A., Li, Q., Sun, S.: Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–10512 (2016). https://doi.org/10.1021/acs.chemrev.5b00687
Huang, Y., Keller, A.A.: EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res. 80, 159–168 (2015). https://doi.org/10.1016/j.watres.2015.05.011
Baker, D.R., Kamat, P.V.: Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv. Funct. Mater. 19(5), 805–811 (2009). https://doi.org/10.1002/adfm.200801173
Suwarnkar, M.B., Dhabbe, R.S., Kadam, A.N., Garadkar, K.M.: Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 40(4), 5489–5496 (2014). https://doi.org/10.1016/j.ceramint.2013.10.137
Gómez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M.J., Ortiz, I., Dionysiou, D.D.: Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017). https://doi.org/10.1016/j.cej.2016.04.140
Dionysiou, D., Puma, G.L., Ye, J., Schneider, J., Bahnemann, D.: Photocatalysis Fundamentals and Perspectives. The Royal Society of Chemistry (RSC), Cambridge (2016). https://doi.org/10.1039/9781782622338
Reddy, D.H.K., Yun, Y.S.: Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016). https://doi.org/10.1016/j.ccr.2016.01.012
Selima, S.S., Khairy, M., Mousa, M.A.: Comparative studies on the impact of synthesis methods on structural, optical, magnetic and catalytic properties of CuFe2O4. Ceram. Int. 45(5), 6535–6540 (2019). https://doi.org/10.1016/j.ceramint.2018.12.146
Sabbaghan, M., Sofalgar, P.: Single-phase γ-Fe2O3 nanoparticles synthesized by green ionothermal method and their magnetic characterization. Ceram. Int. 42(15), 16813–168163 (2016). https://doi.org/10.1016/j.ceramint.2016.07.172
Zhang, X., Lei, L.: Preparation of photocatalytic Fe2O3–TiO2 coatings in one step by metalorganic chemical vapor deposition. Appl. Surf. Sci. 254, 2406–2412 (2008). https://doi.org/10.1016/j.apsusc.2007.09.067
Yi, D.K., Lee, S.S., Ying, J.Y.: Synthesis and applications of magnetic nanocomposite catalysts. Chem. Mater. 18(10), 2459–2461 (2006). https://doi.org/10.1021/cm052885p
Mitra, A., Vázquez, C.V., López-Quintela, M.A., Paul, B.K., Bhaumik, A.: Soft-templating approach for the synthesis of high surface areaand superparamagnetic mesoporous iron oxide materials. Microporous Mesoporous Mater. 131(1–3), 373–377 (2010). https://doi.org/10.1016/j.micromeso.2010.01.017
Arifin, M.N., Rezaul Karim, K.M., Abdullah, H., Khan, M.R.: Synthesis of titania doped copper ferrite photocatalyst and its photoactivity towards methylene blue degradation under visible light irradiation. Bull. Chem. React. Eng. Catal. 14(1), 219–227 (2019). https://doi.org/10.9767/bcrec.14.1.3616.219-227
Khan, M.R., Uddin, M.R., Abdullah, H., Karim, K.R., Yousuf, A.: Preparation and characterization of CuFe2O4/TiO2 photocatalyst for the conversion of CO2 into methanol under visible light. Int. Sch. Sci. Res. Innov. 10(10), 1273–1280 (2016)
Kezzim, A., Nasrallah, N., Abdi, A., Trari, M.: Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2. Energy Convers. Manag. 52, 2800–2806 (2011). https://doi.org/10.1016/j.enconman.2011.02.014
Yusuf, H.Y., Kumar Lakhera, S., Karthik, P., Anpo, M., Neppolian, B.: Facile construction of ternary CuFe2O4–TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. Appl. Surf. Sci. 449, 772–779 (2018). https://doi.org/10.1016/j.apsusc.2018.01.282
Ebrahimian Pirbazari, A., Monazzam, P., Fakhari Kisomi, B.: Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue. Desalin. Water Treat. 63, 283–292 (2017). https://doi.org/10.5004/dwt.2017.20205
Hashemian, S., Ardakani, M.K., Salehifar, H.: Kinetics and thermodynamics of adsorption methylene blue onto tea waste/CuFe2O4 composite. Am. J. Anal. Chem. 4(7), 1–7 (2013). https://doi.org/10.4236/ajac.2013.47A001
Thapa, D., Kulkarni, N., Mishra, S.N., Paulose, P.L., Ayyub, P.: Enhanced magnetization in cubic ferrimagnetic CuFe2O4 nanoparticles synthesized from a citrate precursor: the role of Fe2+. J. Phys. D Appl. Phys. 43(19), 195004 (2010). https://doi.org/10.1088/0022-3727/43/19/195004
Suresh, S., Karthikeyan, S., Jayamoorthy, K.: Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies Effect of Fe2O3 particles on peanut plant leaves. J. Adv. Res. 7(5), 739–747 (2016). https://doi.org/10.1016/j.jare.2015.10.002
Wu, H., Wu, G., Wang, L.: Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015). https://doi.org/10.1016/j.powtec.2014.09.045
Tronc, E., Chane, C., Jolivet, J.P.: Structural and magnetic characterization of e-Fe2O3. J. Solid State Chem. 139(1), 93–104 (1998). https://doi.org/10.1006/jssc.1998.7817
Ogata, M., et al.: Effect of aliovalent dopants on the kinetics of spinodal decomposition in rutile-type TiO2–VO2. J. Eur. Ceram. Soc. 37(9), 3177–3183 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.039
Scherrer, P.: Determination of the internal structure and size of colloid particles by X-rays. Mathematisch-Physikalische Klasse Gottingen 2, 98–100 (1918)
Khan, M., Cao, W.: Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: A combined experimental and theoretical study. J. Appl. Phys. 114(18), 183514 (2013)
Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College, Philadelphia (1976)
Venkatachalam, N., Palanichamy, M., Arabindoo, B., Murugesan, V.: Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. J. Mol. Catal. A: Chem. 266(1–2), 158–165 (2007). https://doi.org/10.1016/j.molcata.2006.10.051
Ghasemi, S., Rahimnejad, S., Rahman Setayesh, S., Rohani, S., Gholami, M.R.: Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J. Hazard. Mater. 172(2–3), 1573–1578 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.029
Venkatachalam, N., Palanichamy, M., Murugesan, V.: Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A Chem. 273(1–2), 177–185 (2007). https://doi.org/10.1016/j.molcata.2007.03.077
Rahman, S.S.U., Qureshi, M.T., Sultana, K., Rehman, W., Khan, M.Y., Asif, M.H., Farooq, M., Sultana, N.: Single step growth of iron oxide nanoparticles and their use as glucose biosensor. Results Phys. 7, 4451–4456 (2017). https://doi.org/10.1016/j.rinp.2017.11.001
Kumar, S., Khanchandani, S., Thirumal, M., Ganguli, A.K.: Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures. ACS Appl. Mater. Interfaces 6(15), 13221–13233 (2014). https://doi.org/10.1021/am503055n
Rouquerol, J., Anvir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.: Recommendation for the characterization of porous solids. Pure Appl. Chem. 66(8), 1739–1758 (1994)
Zdravkov, B.D., Cermak, J.J., Sefara, M., Janku, J.: Pore classification in the characterization of porous materials: a perspective. Cent. Eur. J. Chem. 5(2), 385–395 (2007). https://doi.org/10.2478/s11532-007-0017-9
Ng, K.H., Cheng, C.K.: Photo-polishing of POME into CH4-lean biogas over the UV-responsive ZnO photocatalyst. Chem. Eng. J. 300, 127–138 (2016). https://doi.org/10.1016/j.cej.2016.04.105
Anuchai, S., Phanichphant, S., Tantraviwat, D., Pluengphon, P., Bovornratanaraks, T., Inceesungvorn, B.: Low temperature preparation of oxygen-deficient tin dioxide nanocrystals and a role of oxygen vacancy in photocatalytic activity improvement. J. Colloid Interface Sci. 512, 105–114 (2018). https://doi.org/10.1016/j.jcis.2017.10.047