One-iteration reconstruction algorithm for geometric inverse source problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abda, A.B., Hassine, M., Jaoua, M., Masmoudi, M.: Topological sensitivity analysis for the location of small cavities in stokes flow. SIAM J. Control Optim. 48, 2871–2900 (2009)
El Badia, A., El Hajj, A.: Identification of dislocations in materials from boundary measurements. SIAM J. Appl. Math. 73, 84–103 (2013)
Abdelaziz, B., El Badia, A., El Hajj, A.: Direct algorithms for solving some inverse source problems in $$2D$$ 2 D elliptic equations. Inverse Probl. 31, 105002 (2015)
Atkinson, K., Han,W.: Theoretical Numerical Analysis: A Functional Analysis Framework, In: Texts in Applied Mathematics. vol 39, 3rd edn. Springer (2009)
Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49, 87–108 (2006)
Amstutz, S., Giusti, S.M., Novotny, V.V., de Souza Neto, E.A.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84, 733–756 (2010)
Amstutz, S., Horchani, I., Masmoudi, M.: Crack detection by the topological gradient method. Control Cybern. 34, 81–101 (2005)
Cabayan, H.S., Belford, G.G.: On computing a stable least squares solution to the inverse problem for a planar newtonian potential. SIAM J. Appl. Math. 20, 51–61 (1971)
Caubet, F., Conca, C., Godoy, M.: On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives. Inverse Probl. Imaging. 10, 327–67 (2016)
Canelas, A., Laurain, A., Novotny, A.A.: A new reconstruction method for the inverse potential problem. J. Comput. Phys. 268, 417–431 (2012)
Canelas, A., Laurain, A., Novotny, A.A.: A new reconstruction method for the inverse source problem from partial boundary measurements. Inverse Probl. 31, 075009 (2015)
Chaabane, S., Masmoudi, M., Meftahi, H.: Topological and shape gradient strategy for solving geometrical inverse problems. J. Math. Anal. Appl. 400, 724–742 (2013)
Céa, J., Garreau, S., Guillaume, P., Masmoudi, M.: The shape and topological optimizations connection. Compt. Methods Appl. Mech. Eng. 188, 713–726 (2000)
Cheng, X., Gong, R., Han, W.: A new general mathematical framework for bioluminescence tomography. Comput. Methods Appl. Mech. Eng. 197, 524–535 (2008)
Cheng, X., Gong, R., Han, W., Zheng, X.: A novel coupled complex boundary method for solving inverse source problems. Inverse Probl. 30, 055002 (2014)
Dominguez, N., Gibiat, V., Esquerre, Y.: Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection. Wave Motion. 42, 31–52 (2005)
Ferchichi, J., Hassine, M., Khenous, H.: Detection of point-forces location using topological algorithm in stokes flows. Appl. Math. Comput. 219, 7056–7074 (2013)
Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39, 1756–1778 (2001)
Guillaume, P., Idris, K.S.: Topological sensitivity and shape optimization for the stokes equations. SIAM J. Control Optim. 43, 1–31 (2004)
Han, W., Cong, W., Wang, G.: Mathematical theory and numerical analysis of bioluminescence tomography. Inverse Probl. 22, 1659–1675 (2006)
Han, W., Kazmi, K., Cong, W., Wang, G.: Bioluminescence tomography with optimized optical parameters. Inverse Probl. 23, 1215–1228 (2007)
Hassine, M., Hrizi, M.: Topological sensitivity analysis for reconstruction of the inverse source problem from boundary measurement. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 11, 26–32 (2017)
Hassine, M., Jan, S., Masmoudi, M.: From differential calculus to $$0-1$$ 0 - 1 topological optimization. SIAM J Control Optim. 45, 1965–1987 (2007)
Hassine, M., Masmoudi, M.: The topological asymptotic expansion for the quasi-stokes problem. ESAIM Control Optim. Calcu. Var. 10, 478–504 (2004)
Isakov, V.: Inverse Problems for Partial Differential Equations, vol 127. Springer (2006)
Isakov, V., Leung, S., Qian, J.: A fast local level set method for inverse gravimetry. Commun. Comput. Phys. 10(4), 1044–1070 (2011)
Jleli, M., Samet, B., Vial, V.: Topological sensitivity analysis for the modified Helmholtz equation under an impedance condition on the boundary of a hole. J. Math. Pures Appl. 103, 557–574 (2015)
Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements. Commun. Pure Appl. Math. 37, 289–298 (1984)
Larnier, S., Masmoudi, M.: The extended adjoint method. ESAIM Math. Model. Numer. Anal. 47, 83–108 (2013)
Lv, Y., Tian, J., Cong, W., Wang, G., Luo, J., Yang, W., Li, H.: A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt. Express. 14, 8211–8223 (2006)
Sabelli, A., Aquino, W.: A source sensitivity approach for source localization in steady-state linear systems. Inverse Probl. 29, 095005 (2013)
Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Springer, Berlin, Heiderlberg, New York (1992)
Wang, T., Gao, S., Zhang, L., Wu, Y., He, X., Hou, Y., Huang, H., Tian, J.: Overlap domain decomposition method for bioluminescence tomography (blt). Int. J. Numer. Methods Biomed. Eng. 26, 511–523 (2010)