One Sample, One Shot - Evaluation of sample preparation protocols for the mass spectrometric proteome analysis of human bile fluid without extensive fractionation
Tài liệu tham khảo
Farina, 2014, Proximal fluid proteomics for the discovery of digestive cancer biomarkers, Biochim. Biophys. Acta, 1844, 988, 10.1016/j.bbapap.2013.10.011
Farina, 2014, Bile proteome in health and disease, Compr. Physiol., 4, 91, 10.1002/cphy.c130016
Yamazaki, 1988, Biliary proteins: assessment of quantitative techniques and comparison in gallstone and nongallstone subjects, J. Lipid Res., 29, 1055, 10.1016/S0022-2275(20)38469-8
Farina, 2009, Proteomic analysis of human bile and potential applications for cancer diagnosis, Expert Rev. Proteomics, 6, 285, 10.1586/epr.09.12
Farina, 2011, A step further in the analysis of human bile proteome, J. Proteome Res., 10, 2047, 10.1021/pr200011b
Farid, 2011, Shotgun proteomics of human bile in hilar cholangiocarcinoma, Proteomics, 11, 2134, 10.1002/pmic.201000653
Barbhuiya, 2011, Comprehensive proteomic analysis of human bile, Proteomics, 11, 4443, 10.1002/pmic.201100197
Megger, 2013, Label-free quantification in clinical proteomics, Biochim. Biophys. Acta, 1834, 1581, 10.1016/j.bbapap.2013.04.001
Megger, 2013, Proteomic differences between hepatocellular carcinoma and nontumorous liver tissue investigated by a combined gel-based and label-free quantitative proteomics study, Mol. Cell. Proteomics, 12, 2006, 10.1074/mcp.M113.028027
Reis, 2015, A structured proteomic approach identifies 14-3-3Sigma as a novel and reliable protein biomarker in panel based differential diagnostics of liver tumors, Biochim. Biophys. Acta, 1854, 641, 10.1016/j.bbapap.2014.10.024
Padden, 2014, Identification of novel biomarker candidates for the immunohistochemical diagnosis of cholangiocellular carcinoma, Mol. Cell. Proteomics, 13, 2661, 10.1074/mcp.M113.034942
Megger, 2014, Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines, Biochim. Biophys. Acta, 1844, 967, 10.1016/j.bbapap.2013.07.017
Berthold, 2008, KNIME: The Konstanz Information Miner, 319
Martens, 2011, mzML--a community standard for mass spectrometry data, Mol. Cell. Proteomics, 10, 10.1074/mcp.R110.000133
Kessner, 2008, ProteoWizard: open source software for rapid proteomics tools development, Bioinformatics, 24, 2534, 10.1093/bioinformatics/btn323
Weisser, 2013, An automated pipeline for high-throughput label-free quantitative proteomics, J. Proteome Res., 12, 1628, 10.1021/pr300992u
Mayer, 2015, ProCon - PROteomics CONversion tool, J. Proteomics, 129, 56, 10.1016/j.jprot.2015.06.015
Huang da, 2009, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37, 1, 10.1093/nar/gkn923
Huang da, 2009, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44, 10.1038/nprot.2008.211
Shevchenko, 2006, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc., 1, 2856, 10.1038/nprot.2006.468
Fang, 2015, Matrix effects break the LC behavior rule for analytes in LC-MS/MS analysis of biological samples, Exp. Biol. Med. (Maywood), 240, 488, 10.1177/1535370214554545
Van Eeckhaut, 2009, Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 877, 2198, 10.1016/j.jchromb.2009.01.003
Bantscheff, 2007, Quantitative mass spectrometry in proteomics: a critical review, Anal. Bioanal. Chem., 389, 1017, 10.1007/s00216-007-1486-6
Neilson, 2011, Less label, more free: approaches in label-free quantitative mass spectrometry, Proteomics, 11, 535, 10.1002/pmic.201000553
Bantscheff, 2012, Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present, Anal. Bioanal. Chem., 404, 939, 10.1007/s00216-012-6203-4
Sandra, 2008, Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 866, 48, 10.1016/j.jchromb.2007.10.034
Sandra, 2009, Highly efficient peptide separations in proteomics. Part 2: bi- and multidimensional liquid-based separation techniques, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 877, 1019, 10.1016/j.jchromb.2009.02.050
Naboulsi, 2016, Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma, J. Proteome Res., 15, 38, 10.1021/acs.jproteome.5b00420
Bracht, 2015, Analysis of disease-associated protein expression using quantitative proteomics-fibulin-5 is expressed in association with hepatic fibrosis, J. Proteome Res., 14, 2278, 10.1021/acs.jproteome.5b00053
Chambers, 2015, Multiple Reaction Monitoring Enables Precise Quantification of 97 Proteins in Dried Blood Spots, Mol. Cell. Proteomics, 14, 3094, 10.1074/mcp.O115.049957
Percy, 2014, Multiplexed MRM with Internal Standards for Cerebrospinal Fluid Candidate Protein Biomarker Quantitation, J. Proteome Res., 10.1021/pr500317d
Chambers, 2014, MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum, Expert Rev. Proteomics, 11, 137, 10.1586/14789450.2014.877346
Voigtlander, 2015, Endoscopic diagnosis of cholangiocarcinoma: From endoscopic retrograde cholangiography to bile proteomics, Best Pract. Res. Clin. Gastroenterol., 29, 267, 10.1016/j.bpg.2015.02.005
Lankisch, 2011, Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis, Hepatology, 53, 875, 10.1002/hep.24103