Oncogenes strike a balance between cellular growth and homeostasis
Tài liệu tham khảo
Deberardinis, 2008, Brick by brick: metabolism and tumor cell growth, Curr. Opin. Genet. Dev., 18, 54, 10.1016/j.gde.2008.02.003
Ward, 2012, Metabolic reprogramming: a cancer hallmark even warburg did not anticipate, Cancer Cell, 21, 297, 10.1016/j.ccr.2012.02.014
Barna, 2008, Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency, Nature, 456, 971, 10.1038/nature07449
Faller, 2015, mTORC1-mediated translational elongation limits intestinal tumour initiation and growth, Nature, 517, 497, 10.1038/nature13896
Sabharwal, 2014, Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?, Nat. Rev. Cancer, 14, 709, 10.1038/nrc3803
Laplante, 2012, mTOR signaling in growth control and disease, Cell, 149, 274, 10.1016/j.cell.2012.03.017
Ben-Sahra, 2013, Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1, Science, 339, 1323, 10.1126/science.1228792
Robitaille, 2013, Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis, Science, 339, 1320, 10.1126/science.1228771
Chantranupong, 2015, Nutrient-sensing mechanisms across evolution, Cell, 161, 67, 10.1016/j.cell.2015.02.041
Tee, 2002, Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling, Proc. Natl. Acad. Sci. U.S.A., 99, 13571, 10.1073/pnas.202476899
Zhang, 2014, Coordinated regulation of protein synthesis and degradation by mTORC1, Nature, 513, 440, 10.1038/nature13492
White, 2015, The role for autophagy in cancer, J. Clin. Investig., 125, 42, 10.1172/JCI73941
Kenific, 2015, Cellular and metabolic functions for autophagy in cancer cells, Trends Cell Biol., 25, 37, 10.1016/j.tcb.2014.09.001
Ozcan, 2008, Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis, Mol. Cell, 29, 541, 10.1016/j.molcel.2007.12.023
Clarke, 2014, Endoplasmic reticulum stress in malignancy, Cancer Cell, 25, 563, 10.1016/j.ccr.2014.03.015
Walter, 2011, The unfolded protein response: from stress pathway to homeostatic regulation, Science, 334, 1081, 10.1126/science.1209038
Obeng, 2006, Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells, Blood, 107, 4907, 10.1182/blood-2005-08-3531
Lee, 2008, Regulation of hepatic lipogenesis by the transcription factor XBP1, Science, 320, 1492, 10.1126/science.1158042
Fu, 2011, Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity, Nature, 473, 528, 10.1038/nature09968
Duvel, 2010, Activation of a metabolic gene regulatory network downstream of mTOR complex 1, Mol. Cell, 39, 171, 10.1016/j.molcel.2010.06.022
Porstmann, 2008, SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth, Cell Metab., 8, 224, 10.1016/j.cmet.2008.07.007
Peterson, 2011, mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway, Cell, 146, 408, 10.1016/j.cell.2011.06.034
Young, 2013, Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress, Genes Dev., 27, 1115, 10.1101/gad.198630.112
Griffiths, 2013, Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth, Cancer Metab., 1, 3, 10.1186/2049-3002-1-3
Medvetz, 2015, Therapeutic targeting of cellular metabolism in cells with hyperactive mTORC1: a paradigm shift, Mol. Cancer Res., 13, 3, 10.1158/1541-7786.MCR-14-0343
Dang, 2012, MYC on the path to cancer, Cell, 149, 22, 10.1016/j.cell.2012.03.003
Hart, 2012, ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth, J. Clin. Investig., 122, 4621, 10.1172/JCI62973
Shin, 2013, SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease, Cell Rep., 5, 654, 10.1016/j.celrep.2013.10.007
Carroll, 2015, Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis, Cancer Cell, 27, 271, 10.1016/j.ccell.2014.11.024
Gao, 2009, c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism, Nature, 458, 762, 10.1038/nature07823
Dang, 2009, MYC-induced cancer cell energy metabolism and therapeutic opportunities, Clin. Cancer Res., 15, 6479, 10.1158/1078-0432.CCR-09-0889
Li, 2005, Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis, Mol. Cell. Biol., 25, 6225, 10.1128/MCB.25.14.6225-6234.2005
Kelly, 2004, Transcriptional regulatory circuits controlling mitochondrial biogenesis and function, Genes Dev., 18, 357, 10.1101/gad.1177604
Liu, 2012, Deregulated MYC expression induces dependence upon AMPK-related kinase 5, Nature, 483, 608, 10.1038/nature10927
Pylayeva-Gupta, 2011, RAS oncogenes: weaving a tumorigenic web, Nat. Rev. Cancer, 11, 761, 10.1038/nrc3106
Weinberg, 2010, Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity, Proc. Natl. Acad. Sci. U.S.A., 107, 8788, 10.1073/pnas.1003428107
Finkel, 2011, Signal transduction by reactive oxygen species, J. Cell Biol., 194, 7, 10.1083/jcb.201102095
Fan, 2014, Quantitative flux analysis reveals folate-dependent NADPH production, Nature, 510, 298, 10.1038/nature13236
Ying, 2012, Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism, Cell, 149, 656, 10.1016/j.cell.2012.01.058
Jiang, 2013, Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence, Nature, 493, 689, 10.1038/nature11776
Guo, 2013, Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis, Genes Dev., 27, 1447, 10.1101/gad.219642.113
Yang, 2011, Pancreatic cancers require autophagy for tumor growth, Genes Dev., 25, 717, 10.1101/gad.2016111
Guo, 2011, Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis, Genes Dev., 25, 460, 10.1101/gad.2016311
Commisso, 2013, Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells, Nature, 497, 633, 10.1038/nature12138
Kamphorst, 2013, Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids, Proc. Natl. Acad. Sci. U.S.A., 110, 8882, 10.1073/pnas.1307237110
Majmundar, 2010, Hypoxia-inducible factors and the response to hypoxic stress, Mol. Cell, 40, 294, 10.1016/j.molcel.2010.09.022
Semenza, 2012, Hypoxia-inducible factors in physiology and medicine, Cell, 148, 399, 10.1016/j.cell.2012.01.021
Kaelin, 2008, Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Mol. Cell, 30, 393, 10.1016/j.molcel.2008.04.009
Keith, 2012, HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression, Nat. Rev. Cancer, 12, 9, 10.1038/nrc3183
Toschi, 2008, Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2, J. Biol. Chem., 283, 34495, 10.1074/jbc.C800170200
Blum, 2005, Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death, Cancer Res., 65, 999, 10.1158/0008-5472.999.65.3
Chen, 2001, Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia, J. Biol. Chem., 276, 9519, 10.1074/jbc.M010144200
Gao, 2007, HIF-dependent antitumorigenic effect of antioxidants in vivo, Cancer Cell, 12, 230, 10.1016/j.ccr.2007.08.004
Faubert, 2014, Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha, Proc. Natl. Acad. Sci. U.S.A., 111, 2554, 10.1073/pnas.1312570111
Sun, 2014, Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth, Cell Metab., 19, 285, 10.1016/j.cmet.2013.11.022
Metallo, 2012, Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia, Nature, 481, 380, 10.1038/nature10602
Gameiro, 2013, In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation, Cell Metab., 17, 372, 10.1016/j.cmet.2013.02.002
Rankin, 2009, Hypoxia-inducible factor 2 regulates hepatic lipid metabolism, Mol. Cell. Biol., 29, 4527, 10.1128/MCB.00200-09
Walter, 2014, Hif-2alpha promotes degradation of Mammalian peroxisomes by selective autophagy, Cell Metab., 20, 882, 10.1016/j.cmet.2014.09.017
Qiu, 2015, HIF-2alpha dependent lipid storage promotes endoplasmic reticulum homeostasis in clear cell renal cell carcinoma, Cancer Discov., 5, 652, 10.1158/2159-8290.CD-14-1507
Shen, 2011, Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene, Cancer Discov., 1, 222, 10.1158/2159-8290.CD-11-0098
Raval, 2005, Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma, Mol. Cell. Biol., 25, 5675, 10.1128/MCB.25.13.5675-5686.2005
Maranchie, 2002, The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma, Cancer Cell, 1, 247, 10.1016/S1535-6108(02)00044-2
Kondo, 2003, Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth, PLoS Biol., 1, E83, 10.1371/journal.pbio.0000083
Schodel, 2012, Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression, Nat. Genet., 44, 420, 10.1038/ng.2204
Elorza, 2012, HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5, Mol. Cell, 48, 681, 10.1016/j.molcel.2012.09.017
Gunaratnam, 2003, Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(−/−) renal cell carcinoma cells, J. Biol. Chem., 278, 44966, 10.1074/jbc.M305502200
Walther, 2012, Lipid droplets and cellular lipid metabolism, Annu. Rev. Biochem., 81, 687, 10.1146/annurev-biochem-061009-102430
Wilfling, 2013, Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets, Dev. Cell, 24, 384, 10.1016/j.devcel.2013.01.013
Haddad, 2014, Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma, Cancer, 121, 43, 10.1002/cncr.28976
Faubert, 2015, The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator, Cancer Lett., 356, 165, 10.1016/j.canlet.2014.01.018
Hardie, 2012, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol., 13, 251, 10.1038/nrm3311
Ruggero, 2013, Translational control in cancer etiology, Cold Spring Harb. Perspect. Biol., 5, 5, 10.1101/cshperspect.a012336
Browne, 2004, Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398, J. Biol. Chem., 279, 12220, 10.1074/jbc.M309773200
Horman, 2002, Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis, Curr. Biol., 12, 1419, 10.1016/S0960-9822(02)01077-1
Leprivier, 2013, The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation, Cell, 153, 1064, 10.1016/j.cell.2013.04.055
Tennakoon, 2014, Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch, Oncogene, 33, 5251, 10.1038/onc.2013.463
Yan, 2014, The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation, J. Clin. Investig., 124, 2640, 10.1172/JCI71749
Masson, 2012, The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity, EMBO Rep., 13, 251, 10.1038/embor.2012.9
Faubert, 2013, AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo, Cell Metab., 17, 113, 10.1016/j.cmet.2012.12.001
Atkins, 2013, Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity, Cancer Res., 73, 1993, 10.1158/0008-5472.CAN-12-3109
Gao, 2012, PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis, Mol. Cell. Biol., 32, 5129, 10.1128/MCB.01009-12