OnL 2-homology and asphericity
Tóm tắt
We useL
2 methods to show that if a group with a presentation of deficiency one is an extension ofZ by a finitely generated normal subgroup then the 2-complex corresponding to any presentation of optimal deficiency is aspherical and to prove a converse of the Cheeger-Gromov-Gottlieb theorem relating Euler characteristic and asphericity. These results are applied to the Whitehead conjecture, 4-manifolds and 2-knot groups.
Tài liệu tham khảo
[At] M. F. Atiyah,Elliptic operators, discrete groups and von Neumann algebras, Astérisque32/33 (1976), 43–72.
[Bi] R. Bieri,Homological Dimension of Discrete Groups, Queen Mary College Lecture Notes, London, 1976.
[CG] J. Cheeger and M. Gromov,L 2-Cohomology and group cohomology, Topology25 (1986), 189–215.
[Co] T. D. Cochran,Ribbon knots in S 4, Journal of the London Mathematical Society28 (1983), 563–576.
[Ec1] B. Eckmann,Amenable groups and Euler characteristic, Commentarii Mathematici Helvetici67 (1992), 383–393.
[Ec2] B. Eckmann,Manifolds of even dimension with amenable fundamental group, Commentarii Mathematici Helvetici69 (1994), 501–511.
[Go] C. McA. Gordon,Ribbon concordance of knots in the 3-sphere, Mathematische Annalen257 (1981), 157–170.
[Gt] D. H. Gottlieb,A certain subgroup of the fundamental group, American Journal of Mathematics87 (1965), 840–856.
[Gr] M. Gromov,Geometric Group Theory, Vol. 2:Asymptotic Invariants of Infinite Groups (G. A. Niblo and M. A. Roller, eds.), London Mathematical Society Lecture Note Series 182, Cambridge University Press, Cambridge-New York-Melbourne, 1993.
[Hi1] J. A. Hillman,Aspherical four-manifolds and the centres of two-knot groups, Commentarii Mathematici Helvetici56 (1981), 465–473. Corrigendum:ibid. 58 (1983), 166.
[Hi2] J. A. Hillman,2-Knots and their Groups, Australian Mathematical Society Lecture Series 5, Cambridge University Press, Cambridge-New York-Melbourne, 1989.
[Hi3] J. A. Hillman,Elementary amenable groups and 4-manifolds with Euler characteristic 0, Journal of the American Mathematical Society50 (1991), 160–170.
[Hi4] J. A. Hillman,On 3-dimensional Poincaré duality complexes and 2-knot groups, Mathematical Proceedings of the Cambridge Philosophical Society114 (1993), 215–218.
[Hi5] J. A. Hillman,The Algebraic Characterization of Geometric Four-Manifolds, London Mathematical Society Lecture Note Series, 198, Cambridge University Press, Cambridge-New York-Melbourne, 1994.
[Hi6] J. A. Hillman,On 4-dimensional mapping tori and product geometries, Journal of the London Mathematical Society, to appear.
[Ho] J Howie,Some remarks on a problem of J.H.C. Whitehead, Topology22 (1983), 475–485.
[Li] P. A. Linnell,Zero divisors and group von Neumann algebras, Pacific Journal of Mathematics149 (1991), 349–363.
[Lü] W. Lück,L 2-Betti numbers of mapping tori and groups, Topology33 (1994), 203–214.
[Mi] M. Mihalik,Solvable groups that are simply connected at ∞, Mathematische Zeitschrift195 (1987), 79–87.
[Ra] E. Rapaport Strasser,Knot-like groups, inKnots, Groups and 3-Manifolds (L. P. Neuwirth, ed.), Annals of Mathematics Study 84, Princeton University Press, Princeton, N.J., 1975, pp. 119–133.
[Ro] S. Rosset,A vanishing theorem for Euler characteristics, Mathematische Zeitschrift185 (1984), 211–215.
[Si1] D. Silver,Examples of 3-knots with no minimal Seifert manifolds, Mathematical Proceedings of the Cambridge Philosophical Society110 (1991), 417–420.
[Si2] D. Silver,HNN bases and high-dimensional knots, Proceedings of the American Mathematical Society124 (1996), 1247–1252.