On zero divisor graphs of the rings $$Z_n$$
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atiyah, M.F., MacDonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)
Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434–447 (1999)
Anderson, D.F., LaGrange, J.D.: Commutative Boolean Monoids, reduced rings and the compressed zero-divisor graphs. J. Pure Appl. Algebra 216, 1626–1636 (2012)
Dummit, D.S., Foote, R.M.: Abstract Algebra. Third Edition, Wiley Student Edition (2004)
Pirzada, S.: An Introduction to Graph Theory. University Press, Orient Blackswan, Hyderabad (2012)
Pirzada, S., Aijaz, M.: On graphs with same metric and upper dimension, Communicated
Pirzada, S., Aijaz, M., Redmond, S.P.: Upper dimension and bases of zero-divisor graphs of commutative rings. AKCE Int J Graphs Comb. (2019). https://doi.org/10.1016/j.akcej.2018.12.001
Pirzada, S., Aijaz, M., Redmond, S. P.: On upper dimension of some graphs and their bases sets, Communicated
Pirzada, S., Imran, M.: Computing metric dimension of compressed zero-divisor graphs associated to rings Acta Universitatis Sapientiae. Mathematica 10(2), 298–318 (2018)
Raja, R., Pirzada, S., Redmond, S.P.: On locating numbers and codes of zero-divisor graphs associated with commutative rings. J. Algebra Appl. 15(1), 1650014 (2016). (22 pp)
Reddy, B., Jain, Rupali S., Laxmikanth, N.: Eigenvalues and Wiener index of the zero-divisor graph $$\Gamma ({\mathbb{Z}}_n)$$, arXiv:1707.05083 [math.RA]
Spiroff, S., Wickham, C.: A zero-divisor graph determined by equivalence classes of zero-divisors. Commun. Algebra 39(7), 2338–2348 (2011)
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)