On variational impulsive boundary value problems

Central European Journal of Mathematics - Tập 10 - Trang 1969-1980 - 2012
Marek Galewski1
1Institute of Mathematics, Technical University of Łódź, Łódź, Poland

Tóm tắt

Using the variational approach, we investigate the existence of solutions and their dependence on functional parameters for classical solutions to the second order impulsive boundary value Dirichlet problems with L1 right hand side.

Tài liệu tham khảo

Appell J., Zabrejko P.P., Nonlinear Superposition Operators, Cambridge Tracts in Math., 95, Cambridge University Press, Cambridge, 1990 Chen H., Li J., Variational approach to impulsive differential equations with Dirichlet boundary conditions, Bound. Value Probl., 2010, #325415 Feng M., Xie D., Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations, J. Comput. Appl. Math., 2009, 223(1), 438–448 Idczak D., Rogowski A., On a generalization of Krasnoselskii’s theorem, J. Aust. Math. Soc., 2002, 72(3), 389–394 Jankowski T., Positive solutions to second order four-point boundary value problems for impulsive differential equations, Appl. Math. Comput., 2008, 202(2), 550–561 Lakshmikantham V., Baĭnov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, Ser. Modern Appl. Math., 6, World Scientific, Teaneck, 1989 Ledzewicz U., Schättler H., Walczak S., Optimal control systems governed by second-order ODEs with Dirichlet boundary data and variable parameters, Illinois J. Math., 2003, 47(4), 1189–1206 Mawhin J., Problèmes de Dirichlet Variationnels non Linéaires, Sem. Math. Sup., 104, Presses de l’Université de Montréal, Montréal, 1987 Nieto J.J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 2010, 23(8), 940–942 Nieto J.J., O’Regan D., Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 2009, 10(2), 680–690 Samoilenko A.M., Perestyuk N.A., Impulsive Differential Equations, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 14, World Scientific, Singapore, 1995 Sun J., Chen H., Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems, Nonlinear Anal. Real World Appl., 2010, 11(5), 4062–4071 Tian Y., Ge W., Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 2008, 51(2), 509–527 Xiao J., Nieto J.J., Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin Inst., 2011, 48(2), 369–377 Zavalishchin S.T., Sesekin A.N., Dynamic Impulse Systems, Math. Appl., 394, Kluwer, Dordrecht, 1997 Zhang H., Li Z., Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear Anal. Real World Appl., 2010, 11(1), 67–78 Zhang Z., Yuan R., An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Anal. Real World Appl., 2010, 11(1), 155–162