On vanishing and localizing around corners of electromagnetic transmission resonances

Huaian Diao1, Hongyu Liu2, Guiling Wang3, Ke Yang4
1School of Mathematics, Jilin University, Changchun, China
2Department of Mathematics, City University of Hong Kong, Kowloon, China
3School of Mathematics, Harbin Institute of Technology, Harbin, China
4School of Mathematics and Statistics, Northeast Normal University, Changchun, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blåsten, E., Liu, H., Xiao, J.: On an electromagnetic problem in a corner and its applications. Anal. PDE. (2020) (In press)

Blåsten, E., Liu, H.: On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273, 3616–3632 (2017). Addendum. arXiv:1710.08089

Deng, Y., Duan, C., Liu, H.: On vanishing near corners of conductive transmission eigenfunctions. arXiv:2011.14226

Diao, H., Cao, X., Liu, H.: On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications. Commun. Partial Differ. Equ. 46, 630–679 (2021)

Ammari, H., Garnier, J., Jing, W., Kang, H., Lim, M., Sølna, K., Wang, H.: Mathematical and statistical methods for multistatic imaging: Lecture notes in mathematics, vol. 2098. Springer, Cham (2013)

Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, New York (2019)

Monk, P.: Finite Element Method for Maxwell’s Equations. Oxford University Press, Oxford (2003)

Liu, H., Wang, Y., Zhong, S.: Nearly non-scattering electromagnetic wave set and its application. Z. Angew. Math. Phys. 68(2), 15 (2017)

Liu, H., Xiao, J.: On electromagnetic scattering from a penetrable corner. SIAM J. Math. Anal. 49(6), 5207–5241 (2017)

Blåsten, E.: Nonradiating sources and transmission eigenfunctions vanish at corners and edges. SIAM J. Math. Anal. 50(6), 6255–6270 (2018)

Blåsten, E., Lin, Y.-H.: Radiating and non-radiating sources in elasticity. Inverse Probl. 35(1), 015005 (2019)

Blåsten, E., Liu, H.: Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems. SIAM J. Math. Anal. 53(4), 3801–3837 (2021)

Blåsten, E., Liu, H.: On corners scattering stably and stable shape determination by a single far-field pattern. Indiana Univ. Math. J. 70, 907–947 (2021)

Blåsten, E., Päivärinta, L., Sylvester, J.: Corners always scatter. Commun. Math. Phys. 331, 725–753 (2014)

Cakoni, F., Vogelius, M.: Singularities almost always scatter: regularity results for non-scattering inhomogeneities. arXiv:2104.05058

Cakoni, F., Xiao, J.: On corner scattering for operators of divergence form and applications to inverse scattering. Commun. Partial Differ. Equ. 46, 413–441 (2021)

Salo, M., Päivärinta, L., Vesalainen, E.: Strictly convex corners scatter. Rev. Mat. Iberoamericana 33(4), 1369–1396 (2017)

Salo, M., Shahgholian, H.: Free boundary methods and non-scattering phenomena. arXiv:2106.15154

Blåsten, E., Li, X., Liu, H., Wang, Y.: On vanishing and localizing of transmission eigenfunctions near singular points: a numerical study. Inverse Probl. 33, 105001 (2017)

Chow, Y.-T., Deng, Y., He, Y., Liu, H., Wang, X.: Surface-localized transmission eigenstates, super-resolution imaging and pseudo surface plasmon modes. SIAM J. Imaging Sci. 14(3), 946–975 (2021)

Chow, Y.-T., Deng, Y., Liu, H., Sunkula, M.: Surface concentration of transmission eigenfunctions. arXiv:2109.14361

Deng, Y., Jiang, Y., Liu, H., Zhang, K.: On new surface-localized transmission eigenmodes. Inverse Probl. Imaging (2021) (In press)

Deng, Y., Liu, H., Wang, X., Wu, W.: On geometrical properties of electromagnetic transmission eigenfunctions and artificial mirage. SIAM J. Appl. Math. (2021) (In press)

Diao, H., Liu, H., Sun, B.: On a local geometric property of the generalized elastic transmission eigenfunctions and application. Inverse Probl. 37, 105015 (2021)

Blåsten, E., Liu, H.: Recovering piecewise-constant refractive indices by a single far-field pattern. Inverse Probl. 36(8), 085005 (2020)

Cao, X., Diao, H., Liu, H.: Determining a piecewise conductive medium body by a single far-field measurement. CSIAM Trans. Appl. Math. 1, 740–765 (2020)

Liu, H.: On local and global structures of transmission eigenfunctions and beyond. J. Inverse Ill Posed Probl. (2020). https://doi.org/10.1515/jiip-2020-0099

Cakoni, F., Colton, D., Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia (2016)

Colton, D., Kress, R.: Looking back on inverse scattering theory. SIAM Rev. 60(4), 779–807 (2018)

Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34(3), B247–B264 (2012)

Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–1), 251–266 (2020)