On vanishing and localizing around corners of electromagnetic transmission resonances
Tóm tắt
Từ khóa
Tài liệu tham khảo
Blåsten, E., Liu, H., Xiao, J.: On an electromagnetic problem in a corner and its applications. Anal. PDE. (2020) (In press)
Blåsten, E., Liu, H.: On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273, 3616–3632 (2017). Addendum. arXiv:1710.08089
Deng, Y., Duan, C., Liu, H.: On vanishing near corners of conductive transmission eigenfunctions. arXiv:2011.14226
Diao, H., Cao, X., Liu, H.: On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications. Commun. Partial Differ. Equ. 46, 630–679 (2021)
Ammari, H., Garnier, J., Jing, W., Kang, H., Lim, M., Sølna, K., Wang, H.: Mathematical and statistical methods for multistatic imaging: Lecture notes in mathematics, vol. 2098. Springer, Cham (2013)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, New York (2019)
Liu, H., Wang, Y., Zhong, S.: Nearly non-scattering electromagnetic wave set and its application. Z. Angew. Math. Phys. 68(2), 15 (2017)
Liu, H., Xiao, J.: On electromagnetic scattering from a penetrable corner. SIAM J. Math. Anal. 49(6), 5207–5241 (2017)
Blåsten, E.: Nonradiating sources and transmission eigenfunctions vanish at corners and edges. SIAM J. Math. Anal. 50(6), 6255–6270 (2018)
Blåsten, E., Lin, Y.-H.: Radiating and non-radiating sources in elasticity. Inverse Probl. 35(1), 015005 (2019)
Blåsten, E., Liu, H.: Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems. SIAM J. Math. Anal. 53(4), 3801–3837 (2021)
Blåsten, E., Liu, H.: On corners scattering stably and stable shape determination by a single far-field pattern. Indiana Univ. Math. J. 70, 907–947 (2021)
Blåsten, E., Päivärinta, L., Sylvester, J.: Corners always scatter. Commun. Math. Phys. 331, 725–753 (2014)
Cakoni, F., Vogelius, M.: Singularities almost always scatter: regularity results for non-scattering inhomogeneities. arXiv:2104.05058
Cakoni, F., Xiao, J.: On corner scattering for operators of divergence form and applications to inverse scattering. Commun. Partial Differ. Equ. 46, 413–441 (2021)
Salo, M., Päivärinta, L., Vesalainen, E.: Strictly convex corners scatter. Rev. Mat. Iberoamericana 33(4), 1369–1396 (2017)
Salo, M., Shahgholian, H.: Free boundary methods and non-scattering phenomena. arXiv:2106.15154
Blåsten, E., Li, X., Liu, H., Wang, Y.: On vanishing and localizing of transmission eigenfunctions near singular points: a numerical study. Inverse Probl. 33, 105001 (2017)
Chow, Y.-T., Deng, Y., He, Y., Liu, H., Wang, X.: Surface-localized transmission eigenstates, super-resolution imaging and pseudo surface plasmon modes. SIAM J. Imaging Sci. 14(3), 946–975 (2021)
Chow, Y.-T., Deng, Y., Liu, H., Sunkula, M.: Surface concentration of transmission eigenfunctions. arXiv:2109.14361
Deng, Y., Jiang, Y., Liu, H., Zhang, K.: On new surface-localized transmission eigenmodes. Inverse Probl. Imaging (2021) (In press)
Deng, Y., Liu, H., Wang, X., Wu, W.: On geometrical properties of electromagnetic transmission eigenfunctions and artificial mirage. SIAM J. Appl. Math. (2021) (In press)
Diao, H., Liu, H., Sun, B.: On a local geometric property of the generalized elastic transmission eigenfunctions and application. Inverse Probl. 37, 105015 (2021)
Blåsten, E., Liu, H.: Recovering piecewise-constant refractive indices by a single far-field pattern. Inverse Probl. 36(8), 085005 (2020)
Cao, X., Diao, H., Liu, H.: Determining a piecewise conductive medium body by a single far-field measurement. CSIAM Trans. Appl. Math. 1, 740–765 (2020)
Liu, H.: On local and global structures of transmission eigenfunctions and beyond. J. Inverse Ill Posed Probl. (2020). https://doi.org/10.1515/jiip-2020-0099
Cakoni, F., Colton, D., Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia (2016)
Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34(3), B247–B264 (2012)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–1), 251–266 (2020)