On two elastodynamic homogenization methods for periodic composites

Applied Mathematical Modelling - Tập 113 - Trang 109-128 - 2023
Wei-Zhi Luo1, Qi-Chang He1, Hung Le Quang1
1Univ Gustave Eiffel, CNRS, MSME UMR 8208, F-77454 Marne-la-Vallée, France

Tài liệu tham khảo

Bensoussan, 2011 Allaire, 1992, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 1482, 10.1137/0523084 Boutin, 1993, Rayleigh scattering in elastic composite materials, Int. J. Eng. Sci., 31, 1669, 10.1016/0020-7225(93)90082-6 Boutin, 1996, Microstructural effects in elastic composites, Int. J. Solids Struct., 33, 1023, 10.1016/0020-7683(95)00089-5 Chen, 2001, A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales, J. Appl. Mech., 68, 153, 10.1115/1.1357165 Fish, 2002, Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case, Int. J. Numer. Methods Eng., 54, 347, 10.1002/nme.424 Fish, 2002, Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case, Int. J. Numer. Methods Eng., 54, 331, 10.1002/nme.423 Smyshlyaev, 2009, Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater., 41, 434, 10.1016/j.mechmat.2009.01.009 Wautier, 2015, On the second-order homogenization of wave motion in periodic media and the sound of a chessboard, J. Mech. Phys. Solids, 78, 382, 10.1016/j.jmps.2015.03.001 Fish, 2001, Higher-order homogenization of initial/boundary-value problem, J. Eng. Mech., 127, 1223, 10.1061/(ASCE)0733-9399(2001)127:12(1223) Andrianov, 2008, Higher order asymptotic homogenization and wave propagation in periodic composite materials, Proc. R. Soc. A Math. Phys. Eng. Sci., 464, 1181 Cornaggia, 2020, Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media, Int. J. Solids Struct., 188–189, 88, 10.1016/j.ijsolstr.2019.09.009 Guzina, 2019, A rational framework for dynamic homogenization at finite wavelengths and frequencies, Proc. R. Soc. A Math. Phys. Eng. Sci., 475, 20180547 Meng, 2021, A convergent low-wavenumber, high-frequency homogenization of the wave equation in periodic media with a source term, Appl. Anal., 1 Bacigalupo, 2014, Second-gradient homogenized model for wave propagation in heterogeneous periodic media, Int. J. Solids Struct., 51, 1052, 10.1016/j.ijsolstr.2013.12.001 Bacigalupo, 2014, Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits, Meccanica, 49, 1407, 10.1007/s11012-014-9906-0 Ganghoffer, 2021, A variational approach of homogenization of heterogeneous materials towards second gradient continua, Mech. Mater., 158, 103743, 10.1016/j.mechmat.2021.103743 Hu, 2017, Nonlocal homogenization model for wave dispersion and attenuation in elastic and viscoelastic periodic layered media, J. Appl. Mech., 84, 10.1115/1.4035364 Hu, 2018, Spatial temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites, Comput. Methods Appl. Mech. Eng., 342, 1, 10.1016/j.cma.2018.07.037 Hu, 2019, Multiscale nonlocal effective medium model for in-plane elastic wave dispersion and attenuation in periodic composites, J. Mech. Phys. Solids, 124, 220, 10.1016/j.jmps.2018.10.014 Meng, 2018, On the dynamic homogenization of periodic media: Willis’ approach versus two-scale paradigm, Proc. R. Soc. A Math. Phys. Eng. Sci., 474, 20170638 Préve, 2021, Variational-asymptotic homogenization of thermoelastic periodic materials with thermal relaxation, Int. J. Mech. Sci., 205, 106566, 10.1016/j.ijmecsci.2021.106566 Fantoni, 2022, Multifield constitutive identification of non-conventional thermo-viscoelastic periodic Cauchy materials, Int. J. Mech. Sci., 223, 107228, 10.1016/j.ijmecsci.2022.107228 Kalamkarov, 2009, Asymptotic homogenization of composite materials and structures, Appl. Mech. Rev., 62, 1, 10.1115/1.3090830 Charalambakis, 2010, Homogenization techniques and micromechanics. A survey and perspectives, Appl. Mech. Rev., 63, 1, 10.1115/1.4001911 Willis, 1980, A polarization approach to the scattering of elastic waves-I. Scattering by a single inclusion, J. Mech. Phys. Solids, 28, 287, 10.1016/0022-5096(80)90021-6 Willis, 1980, A polarization approach to the scattering of elastic waves-II. Multiple scattering from inclusions, J. Mech. Phys. Solids, 28, 307, 10.1016/0022-5096(80)90022-8 Willis, 1981, Variational and related methods for the overall properties of composites, Adv. Appl. Mech., 21, 1 Willis, 1981, Variational principles for dynamic problems for inhomogeneous elastic media, Wave Motion, 3, 1, 10.1016/0165-2125(81)90008-1 Willis, 1985, The nonlocal influence of density variations in a composite, Int. J. Solids Struct., 21, 805, 10.1016/0020-7683(85)90084-8 Willis, 1997, Dynamics of composites, 265 Liu, 2000, Locally resonant sonic materials, Science (80-.)., 289, 1734, 10.1126/science.289.5485.1734 Milton, 2006, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys., 8, 248, 10.1088/1367-2630/8/10/248 Simovski, 2007, Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices, Metamaterials, 1, 62, 10.1016/j.metmat.2007.09.002 Norris, 2011, Elastic cloaking theory, Wave Motion, 48, 525, 10.1016/j.wavemoti.2011.03.002 Amirkhizi, 2008, Microstructurally-based homogenization of electromagnetic properties of periodic media, Comptes Rendus Mécanique, 336, 24, 10.1016/j.crme.2007.10.012 Nemat-Nasser, 2011, Homogenization of periodic elastic composites and locally resonant sonic materials, Phys. Rev. B, 83, 104103, 10.1103/PhysRevB.83.104103 Nemat-Nasser, 2013, Bounds on effective dynamic properties of elastic composites, J. Mech. Phys. Solids, 61, 254, 10.1016/j.jmps.2012.07.003 Shuvalov, 2011, Effective Willis constitutive equations for periodically stratified anisotropic elastic media, Proc. R. Soc. A Math. Phys. Eng. Sci., 467, 1749 Srivastava, 2012, Overall dynamic properties of three-dimensional periodic elastic composites, Proc. R. Soc. A Math. Phys. Eng. Sci., 468, 269 Norris, 2012, Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems, Proc. R. Soc. A Math. Phys. Eng. Sci., 468, 1629 Nassar, 2016, On asymptotic elastodynamic homogenization approaches for periodic media, J. Mech. Phys. Solids, 88, 274, 10.1016/j.jmps.2015.12.020 Nassar, 2017, Modulated phononic crystals: non-reciprocal wave propagation and Willis materials, J. Mech. Phys. Solids, 101, 10, 10.1016/j.jmps.2017.01.010 Sridhar, 2018, A general multiscale framework for the emergent effective elastodynamics of metamaterials, J. Mech. Phys. Solids, 111, 414, 10.1016/j.jmps.2017.11.017 Sridhar, 2018, Homogenized enriched continuum analysis of acoustic metamaterials with negative stiffness and double negative effects, J. Mech. Phys. Solids, 119, 104, 10.1016/j.jmps.2018.06.015 Milton, 2007, On modifications of Newton’s second law and linear continuum elastodynamics, Proc. R. Soc. A Math. Phys. Eng. Sci., 463, 855 Willis, 2009, Exact effective relations for dynamics of a laminated body, Mech. Mater., 41, 385, 10.1016/j.mechmat.2009.01.010 Willis, 2011, Effective constitutive relations for waves in composites and metamaterials, Proc. R. Soc. A Math. Phys. Eng. Sci., 467, 1865 Nemat-Nasser, 2011, Overall dynamic constitutive relations of layered elastic composites, J. Mech. Phys. Solids, 59, 1953, 10.1016/j.jmps.2011.07.008 Nassar, 2015, Willis elastodynamic homogenization theory revisited for periodic media, J. Mech. Phys. Solids, 77, 158, 10.1016/j.jmps.2014.12.011