On three-dimensional modelling of crack growth using partition of unity methods

Computers & Structures - Tập 88 Số 23-24 - Trang 1391-1411 - 2010
Timon Rabczuk1, Stéphane Bordas2, Goangseup Zi3
1Department of Mechanical Engineering, University of Canterbury, New Zealand
2University of Glasgow, Civil Engineering Department, Rankine Building, G12 8LT Glasgow, UK#TAB#
3Department of Civil, Environmental & Architectural Engineering, Korea University, 5 Ga 1, An-Am Dong, Sung-Buk Gu, Seoul 136-701, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Areias, 2005, Analysis of three-dimensional crack initiation and propagation using the extended finite element method, Int J Numer Methods Eng, 63, 760, 10.1002/nme.1305

Arrea M, Ingraffea AR. Mixed-mode crack propagation in mortar and concrete. Technical report 81-13, Department of Structural Engineering, Cornell University, Ithaka; 1982.

Arroyo M, Ortiz M. Local maximum-entropy approximation schemes. Lect Notes Comput Sci Eng 2006;57:1.

Arroyo, 2006, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Int J Numer Methods Eng, 65, 2167, 10.1002/nme.1534

Babuška I, Melenk JM. The partition of the unity finite element method. Technical report BN-1185, Institute for Physical Science and Technology, University of Maryland, MD; 1995.

Beissel, 1998, An element-failure algorithm for dynamic crack propagation in general directions, Eng Fract Mech, 61, 407, 10.1016/S0013-7944(98)00072-1

Bellec, 2003, A note on enrichment functions for modelling crack nucleation, Commun Numer Methods Eng, 921, 10.1002/cnm.641

Belytschko, 1999, Elastic crack growth in finite elements with minimal remeshing, Int J Numer Methods Eng, 45, 601, 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

Belytschko, 1995, Element-free Galerkin methods for static and dynamic fracture, Int J Solids Struct, 32, 2547, 10.1016/0020-7683(94)00282-2

Belytschko, 1996, Dynamic fracture using element-free Galerkin methods, Int J Numer Methods Eng, 39, 923, 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W

Belytschko, 1988, A finite element with embedded localization zones, Comput Methods Appl Mech Eng, 70, 59, 10.1016/0045-7825(88)90180-6

Belytschko, 1990, The spectral overlay on finite elements for problems with high gradients, Comput Methods Appl Mech Eng, 81, 71, 10.1016/0045-7825(90)90142-9

Belytschko, 1994, Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229, 10.1002/nme.1620370205

Belytschko, 2001, Arbitrary discontinuities in finite elements, Int J Numer Methods Eng, 50, 993, 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

Belytschko, 2003, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int J Numer Methods Eng, 58, 1873, 10.1002/nme.941

Belytschko, 2003, Structured extended ÿnite element methods for solids deÿned by implicit surfaces, Int J Numer Methods Eng, 56, 609, 10.1002/nme.686

Bordas S. Extended finite element and level set methods with applications to growth of cracks and biofilms. PhD thesis, Northwestern University; 2003.

Bordas, 2007, Derivative recovery and a posteriori error estimate for extended finite elements, Comput Methods Appl Mech Eng, 196, 3381, 10.1016/j.cma.2007.03.011

Bordas, 2006, Enriched finite elements and level sets for damage tolerance assessment of complex structures, Eng Fract Mech, 73, 1176, 10.1016/j.engfracmech.2006.01.006

Bordas, 2007, A simulation-based design paradigm for complex cast components, Eng Comput, 23, 25, 10.1007/s00366-006-0030-1

Bordas, 2007, An extended finite element library, Int J Numer Methods Eng, 10.1002/nme.1966

Bordas, 2008, Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Eng Fract Mech, 75, 943, 10.1016/j.engfracmech.2007.05.010

Bordas Stéphane, Rabczuk Timon, Hung Nguyen-Xuan, Natarajan Sundararajan. Review and recent developments on the smoothed finite element method (SFEM) and first results in the smoothed extended finite element method (SmXFEM). Comput Struct, in press.

Bourdin, 2000, Numerical experiments in revisited brittle fracture, J Mech Phys Solids, 48, 797, 10.1016/S0022-5096(99)00028-9

Camacho, 1996, Computational modeling of impact damage in brittle materials, Int J Solids Struct, 33, 2899, 10.1016/0020-7683(95)00255-3

Carter, 2000, Automated 3D crack growth simulation, Int J Numer Methods Eng, 47, 229, 10.1002/(SICI)1097-0207(20000110/30)47:1/3<229::AID-NME769>3.0.CO;2-2

Chaves EWV. A three-dimensional setting for strong discontinuities modelling in failure mechanics. PhD thesis, UPC Barcelona; 2003.

Chevrier, 1999, Spall fracture: mechanical and microstructural aspects, Eng Fract Mech, 63, 273, 10.1016/S0013-7944(99)00022-3

Chopp, 1993, Computing minimal surfaces via level set curvature flow, J Comput Phys, 106, 7, 10.1006/jcph.1993.1092

Chopp, 1993, Flow under curvature: singularity formation, minimal surfaces, and geodesics, Experiment Math, 2, 235, 10.1080/10586458.1993.10504566

Chopp, 2003, Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method, Int J Eng Sci, 41, 845, 10.1016/S0020-7225(02)00322-1

Cisilino, 1997, Three-dimensional BEM analysis for fatigue crack growth in welded components, Int J Pressure Vessels Piping, 70, 135, 10.1016/S0308-0161(96)00031-2

Coggan, 2003, Numerical modelling of brittle rock failure using a combined finite-discrete element approach, Implications Rock Eng Des

Cruse, 1988

Curtin, 1990, Brittle fracture in disordered materials: a spring network model, J Mater Res, 5, 535, 10.1557/JMR.1990.0535

Dai, 2007, An n-sided polygonal smoothed finite element method (NSFEM) for solid mechanics, Finite Elements Anal Des, 43, 847, 10.1016/j.finel.2007.05.009

de Andres, 1999, Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading, Int J Solids Struct, 36, 2231, 10.1016/S0020-7683(98)00059-6

Dolbow, 2003, Enrichment of enhanced assumed strain approximation for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous path test, Int J Numer Methods Eng, 59, 47, 10.1002/nme.862

Dong, 1983, Global-local finite element methods

Duarte, 2001, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Comput Methods Appl Mech Eng, 190, 2227, 10.1016/S0045-7825(00)00233-4

Duarte, 2001, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Comput Methods Appl Mech Eng, 119, 2227, 10.1016/S0045-7825(00)00233-4

Duarte CA, Reno LG, Simone A. A high-order generalized FEM for through-the-thickness branched cracks. Int J Numer Methods Eng, in press.

Duddu, 2007, A combined extended finite element and level set method for biofilm growth, Int J Numer Methods Eng

Duflot, 2006, A meshless method with enriched weight functions for three-dimensional crack propagation, Int J Numer Methods Eng, 65, 1970, 10.1002/nme.1530

Duflot M. A study of the representation of cracks with level set. Int J Numer Methods Eng, in press.

Duflot M, Bordas Stéphane. An extended global recovery procedure for a posteriori error estimation in extended finite element methods. Int J Numer Methods Eng, in press.

Duflot Marc, Bordas Stéphane. XFEM and mesh adaptation: a marriage of convenience. In: Proceedings of the eighth world congress in computational mechanics; 2008.

Dummerstorf, 2007, Crack propagation criteria in the framework of X-FEM-based structural analyses, Int J Numer Anal Methods Eng, 31, 239, 10.1002/nag.560

Dunant, 2007, Architecture trade-offs of including a mesher in an object-oriented extended finite element code, Eur J Comput Mech, 237, 10.3166/remn.16.237-258

Dvorkin, 1990, Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions, Int J Numer Methods Eng, 30, 541, 10.1002/nme.1620300311

Falk, 2001, A critical evaluation of cohesive zone models of dynamic fracture, J Phys IV, 11, 43, 10.1051/jp4:2001506

Fan, 2007, The RS-method for material failure simulations, Int J Numer Methods Eng

Feist, 2007, Three-dimensional fracture simulations based on the SDA, Int J Numer Anal Methods Geomech, 31, 189, 10.1002/nag.542

Fineberg, 2003, Crack front waves in dynamic fracture, Int J Fract, 121, 55, 10.1023/A:1026296929110

Fleming, 1997, Enriched element-free Galerkin methods for crack tip fields, Int J Numer Methods Eng, 40, 1483, 10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6

Francfort, 1998, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 1319, 10.1016/S0022-5096(98)00034-9

Fukuyama, 1995, Integral equation method for plane crack with arbitrary shape in 3D elastic medium, Bull Seismol Soc Am, 85, 614, 10.1785/BSSA0850020614

Gasser, 2005, Modeling 3D crack propagation in unreinforced concrete using PUFEM, Comput Methods Appl Mech Eng, 194, 2859, 10.1016/j.cma.2004.07.025

Gasser, 2006, 3D crack propagation in unreinforced concrete: a two-step algorithm for tracking 3D crack paths, Comput Methods Appl Mech Eng, 195, 5198, 10.1016/j.cma.2005.10.023

Gifford, 1978, Stress intensity factors by enriched finite elements(for axi-symmetric and planar structures of arbitrary geometry and loading), Eng Fract Mech, 10, 485, 10.1016/0013-7944(78)90059-0

Gravouil, 2002, Non-planar 3D crack growth by the extended finite element and level sets – Part ii: Level set update, Int J Numer Methods Eng, 53, 2569, 10.1002/nme.430

Hou, 2001, An evaluation of 3D crack growth using ZENCRACK, DSTO Aeronaut Maritime Res Lab

Jirásek, 2000, Comparative study on finite elements with embedded discontinuities, Comput Methods Appl Mech Eng, 188, 307, 10.1016/S0045-7825(99)00154-1

Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the seventh international symposium on ballistics; 1983.

Kawai, 1978, A new discrete model for analysis of solid mechanics problems, Numer Methods Fract Mech, 26

Krysl, 1999, The element free Galerkin method for dynamic propagation of arbitrary 3D cracks, Int J Numer Methods Eng, 44, 767, 10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO;2-G

Krysl, 1997, Element-free Galerkin method: convergence of the continuous and discontinuous shape functions, Comput Methods Appl Mech Eng, 148, 257, 10.1016/S0045-7825(96)00007-2

Lemaitre, 1971, Evaluation of dissipation and damage in metal submitted to dynamic loading, Proc ICM, 1

Liang, 2004, Numerical simulation of 3D failure process in heterogeneous rocks, Int J Rock Mech Mining Sci, 41, 323, 10.1016/j.ijrmms.2004.03.061

Lilliu, 2000, Simulation of 3D crack propagation with the lattice model, Proc Materialsweek, 25

Linder, 2007, Finite elements with embedded strong discontinuities for the modeling of failure in solids, Int J Numer Methods Eng, 10.1002/nme.2042

Liu, 2007, Theoretical aspects of the smoothed finite element method (SFEM), Int J Numer Methods Eng, 71, 902, 10.1002/nme.1968

Liu, 2006, A smoothed finite element for mechanics problems, Comput Mech

Lo, 2005, Integral equation approach for 3D multiple crack problems, Eng Fract Mech, 72, 1830, 10.1016/j.engfracmech.2004.11.009

Martha, 1993, Arbitrary crack representation using solid modeling, Eng Comput, 9, 63, 10.1007/BF01199046

Melenk, 1996, The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289, 10.1016/S0045-7825(96)01087-0

Melenk, 1996, The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289, 10.1016/S0045-7825(96)01087-0

Menouillard, 2006, Efficient explicit time stepping for the extended finite element method (X-FEM), Int J Numer Methods Eng, 68, 911, 10.1002/nme.1718

Menouillard T, Rethore J, Moës N. Combescure A, Bung H. Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng, in press.

Mergheim, 2005, A finite element method for the computational modelling of cohesive cracks, Int J Numer Methods Eng, 63, 276, 10.1002/nme.1286

Meschke, 2007, Energy-based modeling of cohesive and cohesionless cracks via X-FEM, Comput Methods Appl Mech Eng, 196, 2338, 10.1016/j.cma.2006.11.016

Mi, 1993, Three-dimensional crack growth simulation using BEM, Comput Struct, 52, 871, 10.1016/0045-7949(94)90072-8

MI, 1994, Three-dimensional crack growth simulation using BEM, Comput Struct, 52, 871, 10.1016/0045-7949(94)90072-8

Moës, 2002, Extended finite element method for cohesive crack growth, Eng Fract Mech, 69, 813, 10.1016/S0013-7944(01)00128-X

Moës, 1999, A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 133, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

Moës, 2002, Non-planar 3D crack growth by the extended finite element method and level sets. Part I: Mechanical model, Int J Numer Methods Eng, 53, 2549, 10.1002/nme.429

Mosler, 2003, 3D modeling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations, Int J Numer Methods Eng, 57, 1553, 10.1002/nme.731

Mosler, 2004, Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias, Comput Methods Appl Mech Eng, 193, 3351, 10.1016/j.cma.2003.09.022

Mote, 1971, Global–local finite element, Int J Numer Methods Eng, 3, 565, 10.1002/nme.1620030410

Nguyen N, Nguyen-Xuan H, Bordas S, Nguyen-Dang H. A locking free smoothed finite element method for shells with high tolerance to mesh distortion. Comput Methods Appl Mech Eng, in press.

Natarajan Sundararajan, Bordas Stéphane. Smoothed polygonal FEM based on Laplace and Wachspress interpolants. Int J Numer Methods Eng, submitted for publication.

Natarajan Sundararajan, Bordas Stéphane. Smoothed extended polygonal FEM. Int J Numer Methods Eng, submitted for publication.

Neittaanmaki P, Rossi T, Korotov S, Onate E, Periaux J, Knorzer D. Polygonal interpolants: construction and adaptive computations on quadtree meshes.

Neves A, Niku SM, Baynham JMW, Adey RA. Automatic 3D crack growth using BEASY. In: Proceedings of the 19th boundary element method conference. Southampton: Computational Mechanics Publications; 1997. p. 819–27.

Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshfree methods: review and key computer implementation aspects. Math Comput Simul. doi:10.1016/j.matcom.2008.01.003.

Nguyen-Xuan H, Bordas Stéphane, Nguyen-Dang H. Smooth finite elements: convergence, accuracy and properties. Int J Numer Methods Eng, in press. doi:10.1002/nme.2146.

Nguyen-Xuan H, Bordas Stéphane, Nguyen-Dang H. Selective integration in the smoothed finite element method. Commun Numer Methods Eng, in press.

Nguyen-Xuan, 2008, A smoothed finite element method for plate analysis, Comput Methods Appl Mech Eng, 197, 1184, 10.1016/j.cma.2007.10.008

Noor, 1986, Global–local methodologies and their application to nonlinear analysis, Finite Elements Anal Des, 2, 333, 10.1016/0168-874X(86)90020-X

Oliver, 2000, On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations, Int J Solids Struct, 56, 1051

Oliver, 1996, Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals. Part 2: Numerical simulation, Int J Numer Methods Eng, 39, 3575, 10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E

Oliver, 1999, Strong discontinuities and continuum plasticity models: the strong discontinuity approach, Int J Plasticity, 15, 319, 10.1016/S0749-6419(98)00073-4

Oliver, 2003, On the strong discontinuity approach in finite deformation settings, Int J Numer Methods Eng, 56, 1051, 10.1002/nme.607

Oliver, 2004, Continuum approach to the numerical simulation of material failure in concrete, Int J Anal Numer Methods Geomech, 28, 609, 10.1002/nag.365

Oliver J, Huespe AE, Snchez PJ. A comparative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Comput Methods Appl Mech Eng, in press.

Organ, 1996, Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Comput Mech, 18, 225, 10.1007/BF00369940

Ortiz, 1999, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int J Numer Methods Eng, 44, 1267, 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7

Ortiz, 1987, Finite element method for localized failure analysis, Comput Methods Appl Mech Eng, 61, 189, 10.1016/0045-7825(87)90004-1

Osher, 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi transformations, J Comput Phys, 79, 12, 10.1016/0021-9991(88)90002-2

Papoulia, 2003, Time continuity in cohesive finite element modeling, Int J Numer Methods Eng, 58, 679, 10.1002/nme.778

Potyondy, 1995, An algorithm to generate quadrilateral or triangular element surface meshes in arbitrary domains with applications to crack-propagation, Int J Numer Methods Eng, 38, 2677, 10.1002/nme.1620381603

Prabel B, Combescure A, Gravouil A, Marie S. Level set XFEM non-matching meshes: application to dynamic crack propagation in elasto-plastic media. Int J Numer Methods Eng, in press.

Rabczuk, 2007, A meshfree thin shell method for non-linear dynamic, Int J Numer Methods Engineering, 75, 524, 10.1002/nme.2013

Rabczuk, 2005, Adaptivity for structured meshfree particle methods in 2D and 3D, Int J Numer Methods Eng, 63, 1559, 10.1002/nme.1326

Rabczuk, 2004, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int J Numer Methods Eng, 61, 2316, 10.1002/nme.1151

Rabczuk, 2007, A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput Methods Appl Mech Eng, 196, 2777, 10.1016/j.cma.2006.06.020

Rabczuk, 2007, A meshfree method based on the local partition of unity for cohesive cracks, Comput Mech, 39, 43, 10.1007/s00466-006-0067-4

Rabczuk, 2007, A three-dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity, Comput Mech, 40, 473, 10.1007/s00466-006-0122-1

Ravi-Chandar, 1998, Dynamic fracture of nominally brittle materials, Int J Fract, 90, 83, 10.1023/A:1007432017290

Remmers, 2003, A cohesive segments method for the simulation of crack growth, Comput Mech, 31, 69, 10.1007/s00466-002-0394-z

Rozycki, 2007, X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries, Comput Methods Appl Mech Eng

Salac, 2007, A level set approach to model directed nanocrack patterns, Comput Mater Sci, 39, 849, 10.1016/j.commatsci.2006.10.008

Samaniego E, Oliver X, Huespe A. Contributions to the continuum modelling of strong discontinuities in two-dimensional solids. PhD thesis, International Center for Numerical Methods in Engineering, Monograph CIMNE No. 72, Barcelona, Spain; 2003.

Sancho, 2007, Three-dimensional simulation of concrete fracture using embedded crack elements without enforcing crack path continuity, Int J Numer Anal Methods Geomech, 31, 173, 10.1002/nag.540

Schollmann, 2003, Development of a new software for adaptive crack growth simulations in 3D structures, Eng Fract Mech, 70, 249, 10.1016/S0013-7944(02)00028-0

Sharon, 1996, Microbranching instability and the dynamic fracture of brittle materials, Phys Rev B, 54, 7128, 10.1103/PhysRevB.54.7128

Song, 2006, A method for dynamic crack and shear band propagation with phantom nodes, Int J Numer Methods Eng, 67, 868, 10.1002/nme.1652

Song, 2007, A comparative study on finite element methods for dynamic fracture, Comput Mech

Bordas Stéphane, Duflot M, Le P. A simple a posteriori error estimator for the extended finite element method. Commun Numer Methods Eng, in press. doi:10.1002/cnm.1001.

Stolarska, 2001, Modelling crack growth by level sets in the extended finite element method, Int J Numer Methods Eng, 51, 943, 10.1002/nme.201

Strouboulis, 2000, The design and analysis of the generalized finite element method, Int J Numer Methods Eng, 181, 43

Strouboulis, 2000, The generalized finite element method: an example of its implementation and illustration of its performance, Int J Numer Methods Eng, 47, 1401, 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8

Sukumar, 2004, Construction of polygonal interpolants: a maximum entropy approach, Int J Numer Method Eng, 61, 2159, 10.1002/nme.1193

Sukumar, 2005, Maximum entropy approximation, Bayesian Inference Maximum Entropy Methods Sci Eng, 803, 337, 10.1063/1.2149812

Sukumar, 2004, Construction of polygonal interpolants: a maximum entropy approach, Int J Numer Methods Eng, 61, 2159, 10.1002/nme.1193

Sukumar, 2006, Recent advances in the construction of polygonal finite element interpolants, Arch Comput Methods Eng, 13, 129, 10.1007/BF02905933

Sukumar, 2004, Conforming polygonal finite elements, Int J Numer Methods Eng, 61, 2045, 10.1002/nme.1141

Sukumar N, Tabarraei A. Numerical formulation and application of polygonal finite elements. In: Proceedings of the seventh international ESAFORM conference on material Forming; 2004. p. 4–28.

Sukumar, 2007, Overview and construction of meshfree basis functions: from moving least squares to entropy approximants, Int J Numer Methods Eng, 70, 181, 10.1002/nme.1885

Sukumar, 1997, An element-free Galerkin method for three-dimensional fracture mechanics, Comput Mech, 20, 170, 10.1007/s004660050235

Swenson, 1988, Modeling mixed-mode dynamic crack propagation using finite elements: theory and applications, Comput Mech, 3, 381, 10.1007/BF00301139

Tabarraei, 2008, Extended finite element method on polygonal and quadtree meshes, Comput Methods Appl Mech Eng, 197, 425, 10.1016/j.cma.2007.08.013

Teng, 2005, Numerical prediction of fracture in the Taylor test, Int J Solids Struct, 42, 2929, 10.1016/j.ijsolstr.2004.09.039

Ventura, 2002, A vector level set method and new discontinuity approximations for crack growth by EFG, Int J Numer Methods Eng, 54, 923, 10.1002/nme.471

Ventura, 2003, Vector level sets for description of propagating cracks in finite elements, Int J Numer Methods Eng, 58, 1571, 10.1002/nme.829

Wyart E. Three-dimensional crack analysis in aeronautical structures using the substructured finite element/extended finite element method. PhD thesis, Université Catholique de Louvain; 2007.

Wyart E, Coulon D, Duflot M, Pardoen T, Remacle J-F, Lani F. A substructured FE shell/XFE 3D method for crack analysis. Int J Numer Methods Eng, in press.

Wyart E, Coulon D, Martiny P, Pardoen T, Remacle J-F, Lani F. A substructured FE/XFE method for stress intensity factors computation in an industrial structure. Rev Eur Méc Numér, in press.

Wyart E, Duflot M, Coulon D, Martiny P, Pardoen T, Remacle J-F, et al. Substructuring FE–XFE approaches applied to three-dimensional crack propagation. J Comput Appl Math, in press.

Xu, 1994, Numerical simulations of fast crack growth in brittle solids, J Mech Phys Solids, 42, 1397, 10.1016/0022-5096(94)90003-5

Xu, 1993, Void nucleation by inclusion debonding in a crystal matrix, Modell Simul Mater Sci Eng, 1, 111, 10.1088/0965-0393/1/2/001

Zhou, 2004, Dynamic crack propagation with cohesive elements: a methodology to address mesh dependence, Int J Numer Methods Eng, 59, 1, 10.1002/nme.857

Zi, 2003, New crack-tip elements for XFEM and applications to cohesive cracks, Int J Numer Methods Eng, 57, 2221, 10.1002/nme.849

Zi, 2004, A method for growing multiple cracks without remeshing and its application to fatigue crack growth, Modell Simul Mater Sci Eng, 12, 901, 10.1088/0965-0393/12/5/009

Zi, 2007, Extended meshfree methods without the branch enrichment for the cohesive crack model, Comput Mech, 40, 367, 10.1007/s00466-006-0115-0