On the weak consistency of finite volumes schemes for conservation laws on general meshes
Tóm tắt
The aim of this paper is to develop some tools in order to obtain the weak consistency of (in other words, an analogue of the Lax–Wendroff theorem for) finite volume schemes for balance laws in the multi-dimensional case and under minimal regularity assumptions for the mesh. As in the seminal Lax–Wendroff paper, our approach relies on a discrete integration by parts of the weak formulation of the scheme. Doing so, a discrete gradient of the test function appears; the central argument for the scheme consistency is to remark that this discrete gradient is convergent in
$$L^\infty $$
weak
$$\star $$
.
Tài liệu tham khảo
Abgrall, R., Marpeau, F.: Residual distribution schemes on quadrilateral meshes. J. Sci. Comput. 30, 131–175 (2006)
Abgrall, R., Roe, P.L.: High order fluctuation schemes on triangular meshes. J. Sci. Comput. 19, 3–36 (2003)
Carpenter, M.H., Gottlieb, D., Shu, C.-W.: On the conservation and convergence to weak solutions of global schemes. J. Sci. Comput. 18, 111–132 (2003)
Champier, S., Gallouët, T.: Convergence d’un schéma décentré amont sur un maillage triangulaire pour un problème hyperbolique linéaire. Modélisation mathématique et analyse numérique 26(7), 835–853 (1992)
Elling, V.: A Lax–Wendroff type theorem for unstructured quasi-uniform grids. Math. Comput. 76, 251–272 (2007)
Eymard, R., Gallouët, T.: H-convergence and numerical schemes for elliptic equations. SIAM J. Numer. Anal. 41, 539–562 (2000)
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North Holland, Amsterdam (2000). https://hal.archives-ouvertes.fr/hal-02100732
Fedkiw, R.P., Merriman, B., Osher, S.: Simplified discretization of systems of hyperbolic conservation laws containing advection equations. J. Comput. Phys. 157, 302–326 (2000)
Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (1996)
Kröner, D., Rokyta, M., Wierse, M.: A Lax–Wendroff type theorem for upwind finite volume schemes in 2-D. East West J. Numer. Math. 4, 279–292 (1996)
Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
Muñoz Ruiz, M.L., Parés, C.: On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws. J. Sci. Comput. 48, 274–295 (2011)
Shi, C., Shu, C.-W.: On local conservation of numerical methods for conservation laws. Comput. Fluids 169, 3–9 (2018)