On the value of the von Kármán constant in the atmospheric surface layers over urban surfaces
Tài liệu tham khảo
Andreas, 2009, A new value of the von Kármán: Implication and implementation, J. Appl. Meteorol. Clim., 48, 923, 10.1175/2008JAMC1951.1
Andreas, 2006, Evaluations of the von Kármán constant in the atmospheric surface layer, J. Fluid Mech., 559, 117, 10.1017/S0022112006000164
Awol, 2022, A new analytical model for wind flow in canopies, J. Wind Eng. Ind. Aerodyn., 225, 10.1016/j.jweia.2022.105003
Barlow, 2009
Blunn, 2021, Turbulence characteristics across a range of idealized urban canopy geometries, Boundary-Layer Meteorol., 182, 275, 10.1007/s10546-021-00658-6
Cao, 2014, Impact of urban surface roughness length parameterization scheme on urban atmospheric environment simulation, J. Appl. Math., 2014, 10.1155/2014/267683
Castro, 2017, Are urban-canopy velocity profiles exponential?, Boundary-Layer Meteorol., 164, 337, 10.1007/s10546-017-0258-x
Castro, 2010, Very-rough-wall channel flows: a DNS study, vol. 22
Cheng, 2002, Near wall flow over urban-like roughness, Boundary-Layer Meteorol., 104, 229, 10.1023/A:1016060103448
Cheng, 2011, Large-eddy simulation of flow and pollutant transports in and above two-dimensional idealized street canyons, Boundary-Layer Meteorol., 139, 411, 10.1007/s10546-010-9584-y
Cheng, 2011, Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities, J. Wind Eng. Ind. Aerodyn., 99, 434, 10.1016/j.jweia.2010.12.009
Cheng, 2021, A simple mixing-length model for urban canopy flows, Boundary-Layer Meteorol., 181, 1, 10.1007/s10546-021-00650-0
Cheng, 2023, Scaling of flows over realistic urban geometries: A large-eddy simulation study, Boundary-Layer Meteorol., 186, 125, 10.1007/s10546-022-00749-y
Duan, 2021, Predicting urban surface roughness aerodynamic parameters using random forest, J. Appl. Meteorol. Climatol., 60, 999, 10.1175/JAMC-D-20-0266.1
Frenzen, 1995, On the magnitude and apparent range of variation of the von karman constant in the atmospheric surface layer, Boundary-Layer Meteorol., 72, 371, 10.1007/BF00709000
Furtak-Cole, 2020, Predicting mean velocity profiles inside urban canyons, J. Wind Eng. Ind. Aerodyn., 207, 10.1016/j.jweia.2020.104280
Garratt, 1994, 336
Giometto, 2016, Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface, Boundary-Layer Meteorol., 160, 425, 10.1007/s10546-016-0157-6
Grimmond, 1999, Aerodynamic properties of urban areas derived from analysis of surface form, J. Appl. Meteorol., 38, 1262, 10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
Kanda, 2013, A new aerodynamic parametrization for real urban surfaces, Boundary-Layer Meteorol., 148, 357, 10.1007/s10546-013-9818-x
Kanda, 2011, Velocity adjustment and passive scalar diffusion in and above an urban canopy in response to various approach flows, Boundary-Layer Meteorol., 141, 415, 10.1007/s10546-011-9646-9
Kastner-Klein, 2004, Mean flow and turbulence characteristics in an urban roughness sublayer, Boundary-Layer Meteorol., 111, 55, 10.1023/B:BOUN.0000010994.32240.b1
Leonardi, 2010, Channel flow over large cube roughness: a direct numerical simulation study, J. Fluid Mech., 651, 519, 10.1017/S002211200999423X
Li, 2022, Bridging the urban canopy sublayer to aerodynamic parameters of the atmospheric surface layer, Boundary-Layer Meteorol., 185, 35, 10.1007/s10546-022-00723-8
Li, 2010, Variability of the apparent von Kármán parameter during aeolian saltation, Geophys. Res. Lett., 37, L15404, 10.1029/2010GL044068
Ma, 2023, Effects of unstable thermal stratification on the flow characteristics in an idealized rural-to-urban transition region: A large-eddy simulation study, Build Environ., 230, 10.1016/j.buildenv.2022.109971
Marusic, 2013, On the logarithmic region in wall turbulence, J. Fluid Mech., 716, R31, 10.1017/jfm.2012.511
Mckeon, 2004, Further observations on the mean velocity distribution in fully developed pipe flow, J. Fluid Mech., 501, 135, 10.1017/S0022112003007304
Mo, 2021, Roughness sublayer flows over real urban morphology: A wind tunnel study, Build Environ., 188, 10.1016/j.buildenv.2020.107463
Nandi, 2021, Estimation of integral scales across the neutral atmospheric boundary layer depth: A large eddy simulation study, J. Wind Eng. Ind. Aerodyn., 218, 10.1016/j.jweia.2021.104715
Oke, 2017, 519
Oncley, 1996, Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions, J. Atmos. Sci., 53, 1029, 10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2
OpenFOAM, 2021
Raupach, 1991, Rough-wall turbulent boundary layers, Appl. Mech. Rev., 44, 1, 10.1115/1.3119492
Ricciardelli, 2006, Some characteristics of the wind flow in the lower urban boundary layer, J. Wind Eng. Ind. Aerodyn., 94, 815, 10.1016/j.jweia.2006.06.003
Sadique, 2017, Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: Effect of aspect ratio and arrangements, Boundary-Layer Meteorol., 163, 203, 10.1007/s10546-016-0222-1
Schumann, 1975, Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., 18, 376, 10.1016/0021-9991(75)90093-5
Shen, 2023, Spatializing the roughness length of heterogeneous urban underlying surfaces to improve the WRF simulation-part 1: A review of morphological methods and model evaluation, Atmos. Environ., 270
Sill, 1988, Turbulent boundary layer profiles over uniform rough surfaces, J. Wind Eng. Ind. Aerodyn., 31, 147, 10.1016/0167-6105(88)90002-5
Tennekes, 1972, 320
Yamamoto, 2018, Numerical evidence of logarithmic regions in channel flow at Reτ= 8000, Phys. Rev. Fluids, 3, 10.1103/PhysRevFluids.3.012602
Yao, 2022, Statistical analysis of the organized turbulence structure in the inertial and roughness sublayers over real urban area by building-resolved large-eddy simulation, Build Environ., 207B