On the validity of the Ginzburg-Landau equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
P. Chossat, G. Iooss: Primary and secondary bifurcation in the Couette-Taylor problem,Japan J. Appl. Math. 2 (1985)
H. Swinney, J. P. Gollub (eds): Hydrodynamic Instabilities and the Transition to Turbulence,Topics in Applied Physics 45, Springer-Verlag (1981)
K. Stewartson, J. T. Stuart: A nonlinear instability theory for a wave system in plane Poiseuille flow,J. Fluid Mech. 48 (1971)
C. A. Holmes: Bounded solutions of the nonlinear parabolic amplitude equation for plane Poiseuille flow,Proc. R. Soc. Lond. A. 402 (1985)
P. G. Drazin, W. H. Reid:Hydrodynamic Stability, Cambridge University Press (1981)
H. Haken (ed.): Evolution of order and chaos,Springer series in Synergetics 17, Springer-Verlag (1982)
J. W. Wesfreid, S. Zaleski (eds.): Cellular structures in instabilities,Lecture Notes in Physics 210, Springer-Verlag (1984)
H. R. Brand, P. S. Lomdahl, A. C. Newell: Benjamin-Feir turbulence in convective binary fluid mixtures,Phys. D. 23 (1986)
W. Eckhaus, G. Iooss: Strong selection or rejection of spatially periodic patterns in degenerate bifurcations,Phys. D. 39 (1989)
Doelman, A.:On the nonlinear evolution of patterns; modulation equations and their solutions, thesis, Un. of Utrecht, 1990
M. J. Landman: Solutions of the Ginzburg-Landau equation of interest in shear flow transition,Stud. Appl. Math. 76 (1987)
A. C. Newell: The dynamics of patterns: a survey, to appear inPropagation in Nonequilibrium Systems (ed. J. E. Westfreid), Springer-Verlag
G. Iooss, A. Mielke, Y. Demay: Theory of steady Ginzburg-Landau equation, in hydrodynamic stability problems,Eur. J. Mech. B/Fluids 8 (1989)
R. C. DiPrima, W. Eckhaus, L. A. Segel: Non-linear wave-number interaction in near-critical two-dimensiona flows,J. Fluid Mech. 49 (1971)
W. Eckhaus: Asymptotic analysis of singular perturbations,Stud. Math. Appl. 9, North-Holland Publishing Company (1979)
P. Holmes: Spatial structure of time-periodic solutions of the Ginzburg-Landau equation,Phys. D. 23 (1986)
E. Kreyszig:Introductory Functional Analysis with Applications, Wiley, New York, 1978.
L. A. Segel: Distant side-walls cause slow amplitude modulation of cellular convection,J. Fluid Mech. 38, 203–224 (1969)
A. Iooss, G. Mielke: Bifurcating time-periodic solution of Navier-Stokes equations in infinite cylinders, to appear inJ. of Nonl. Sc.
J. P. Collet, P. Eckman: The time dependent amplitude equation for the Swift-Hohenberg problem,Comm. Math. Phys.,132 (1990)