On the use of spatial symmetry in ab initio calculations. Transformation of the two-electron integrals from atomic orbital to localized molecular orbital basis

Journal of Mathematical Chemistry - Tập 13 - Trang 107-113 - 1993
Ede Kapuy1,2, Cornelia Kozmutza2
1Department of Theoretical Physics, József Attila University, Szeged, Hungary
2Quantum Theory Group, Physics Institute, Technical University of Budapest Budapest, Hungary

Tóm tắt

Anm 5-dependent integral transformation procedure from atomic orbital basis to localized molecular orbitals is described for spatially extended systems with some Abelian symmetry groups. It is shown that exploiting spatial symmetry, the number of non-redundant integrals for normal saturated hydrocarbons can be reduced by a factor of 2.5-3.5, depending on the size of the system and on the basis. Starting from a list of integrals over basis functions in canonical order, the number of multiplications of the four-index transformation is reduced by a factor of 2.8-3.5 as compared to that of Diercksen's algorithm. It is pointed out that even larger reduction can be achieved if negligible integrals over localized molecular orbitals are omitted from the transformation in advance.

Tài liệu tham khảo

K.C. Tang and C. Edmiston, J. Chem. Phys. 52 (1970)997. C.F. Bender, J. Comput. Phys. 9 (1972)547. M. Yoshimine, J. Comput. Phys. 11 (1973449. Ph. Pendergast and W.H. Fink, J. Comput. Phys. 14 (1974)286. N.W. Winter, W.C. Ermler and R.M. Pitzer, Chem. Phys. Lett. 19 (1973)179. R.M. Pitzer, J. Chem. Phys. 58 (1973)3111. G.H.F. Diercksen, Theor. Chim. Acta 33 (1974)1. J. Almlöf, Int. J. Quant. Chem. 8 (1974)915. E.R. Davidson, J. Chem. Phys. 62 (1974)400. J.A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. S11 (1977)149. V.K. Saunders and J.H. van Lenthe, Mol. Phys. 48 (1983)923. P. Carsky, B.A. Hess, Jr., and L.J. Schaad, J. Comput. Chem. 5 (1984)280. P.D. Dacre, Chem. Phys. Lett. 7 (1970)47. M. Dupuis and H.F. King, Int. J. Quant. Chem. 11 (1977)613. P.R. Taylor, Int. J. Quant. Chem. 27 (1985)89. C. Kozmutza, Theor. Chim. Acta 60 (1981)53. F. Bartha, E. Kapuy and C. Kozmutza, J. Mol. Struct. THEOCHEM 122 (1985)205. C. Kozmutza, J. Mol. Struct. THEOCHEM 123 (1985)391. C. Kozmutza, J. Comput. Chem. 8 (1987)1179. S. Wilson, in:Methods in Computational Chemistry, ed. S. Wilson (Plenum Press, New York, 1987), pp. 251–309. E. Kapuy, Z. Csépes and C. Kozmutza, Int. J. Comput. Chem. 23 (1983)981. E. Kapuy, Z. Csépes and C. Kozmutza, Croatica Chem. Acta 57 (1984)855. E. Kapuy, F. Bartha, F. Bogár and C. Kozmutza, Theor. Chim. Acta 72 (1987)337. E. Kapuy, F. Bartha, C. Kozmutza and F. Bogár, J. Mol. Struct. THEOCHEM 170 (1988)59. E. Kapuy, F. Bartha, F. Bogár, Z. Csépes and C. Kozmutza, Int. J. Quant. Chem. 38 (1990)139; E. Kapuy, F. Bogár, F. Bartha and C. Kozmutza, J. Mol. Struct. THEOCHEM 233(1991)61. E. Tfirst, C. Kozmutza and E. Kapuy, J. Mol. Struct. THEOCHEM 227 (1991)93.