On the use of nanocellulose as reinforcement in polymer matrix composites

Composites Science and Technology - Tập 105 - Trang 15-27 - 2014
Koon‐Yang Lee1, Yvonne Aitomäki2, Lars A. Berglund3, Kristiina Oksman2, Alexander Bismarck4,5
1Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE London, UK
2Composite Centre Sweden, Division of Materials Science, Lulea University of Technology, Lulea, Sweden
3Wallenberg Wood Science Centre, Royal Institute of Technology, Stockholm, Sweden
4Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
5Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straβe 42, 1090 Vienna, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ragauskas, 2006, The path forward for biofuels and biomaterials, Science, 311, 484, 10.1126/science.1114736

Bhardwaj, 2007, Advances in the properties of polylactides based materials: a review, J Biobased Mater Bioenergy, 1, 191, 10.1166/jbmb.2007.023

Freudenberg, 1932, The relation of cellulose to lignin in wood, J Chem Educ, 9, 1171, 10.1021/ed009p1171

Bismarck, 2005, Plant fibers as reinforcement for green composites, 37

Oksman, 2001, High quality flax fibre composites manufactured by the resin transfer moulding process, J Reinf Plast Compos, 20, 621, 10.1177/073168401772678634

Wielage, 1999, Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene, Thermochim Acta, 337, 169, 10.1016/S0040-6031(99)00161-6

Thomason, 2010, Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced composites, Polym Compos, 31, 1525, 10.1002/pc.20939

Cichocki, 2002, Thermoelastic anisotropy of a natural fiber, Compos Sci Technol, 62, 669, 10.1016/S0266-3538(02)00011-8

Stamm, 1953

Schwartz, 1945, Pulp-reinforced plastics, South Pulp Paper J, 8, 19

Cox, 1944, Paper-base plastics part 1. The preparation of phenolic laminated boards, J Soc Chem Indus, 63, 150

Eichhorn, 2010, Review: current international research into cellulose nanofibres and nanocomposites, J Mater Sci, 45, 1, 10.1007/s10853-009-3874-0

Siqueira, 2010, Cellulosic bionanocomposites: a review of preparation, Propertie Appl Polym, 2, 728

Sain, 2006, Introduction to cellulose nanocomposites, Cell Nanocompos: Proc Characterization Propertie, 938, 2, 10.1021/bk-2006-0938.ch001

Klemm, 2005, Cellulose: fascinating biopolymer and sustainable raw material, Angew Chem-Int Edit, 44, 3358, 10.1002/anie.200460587

Klemm, 2011, Nanocelluloses: a new family of nature-based materials, Angew Chem-Int Edit, 50, 5438, 10.1002/anie.201001273

Dufresne, 2013, Nanocellulose: a new ageless bionanomaterial, Mater Today, 16, 220, 10.1016/j.mattod.2013.06.004

Kalia, 2011, Cellulose-based bio- and nanocomposites: a review, Int J Polym Sci, 10.1155/2011/837875

Henriksson, 2008, Cellulose nanopaper structures of high toughness, Biomacromolecules, 9, 1579, 10.1021/bm800038n

Preston, 1948, An electron microscope study of cellulose in the wall of Valonia ventricosa, Nature, 162, 665, 10.1038/162665a0

Belton, 1989, High-resolution solid-state C-13 nuclear magnetic-resonance spectroscopy of tunicin, an animal cellulose, Macromolecules, 22, 1615, 10.1021/ma00194a019

Turbak, 1983, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J Appl Polym Sci Appl Polym Sym, 37, 459

Herrick, 1983, Microfibrillated cellulose: morphology and accessibility, vol. 37, 797

Iguchi, 2000, Bacterial cellulose – a masterpiece of nature’s arts, J Mater Sci, 35, 261, 10.1023/A:1004775229149

Gama, 2013

Brown, 1886, The chemical action of pure cultivations of bacterium aceti, J Chem Soc Trans, 49, 172, 10.1039/CT8864900172

Malcolm Brown, 1989, Bacterial cellulose, 145

Klemm, 2009, Nanocellulose materials – different cellulose, different functionality, Macromol Symp, 280, 60, 10.1002/masy.200950608

Blaker, 2011, Hierarchical composites made entirely from renewable resources, J Biobased Mater Bioenergy, 5, 1, 10.1166/jbmb.2011.1113

Lee, 2014, More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites, Macromol Biosci, 14, 10, 10.1002/mabi.201300298

Wuhrmann, 1946, Elektronenmikroskopische Untersuchungen an Zellulosefasern nach Behandlung mit Ultraschall, Experientia, 2, 105, 10.1007/BF02172568

Iwamoto, 2005, Optically transparent composites reinforced with plant fiber-based nanofibers, Appl Phys A-Mater Sci Process, 81, 1109, 10.1007/s00339-005-3316-z

Siro, 2010, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17, 459, 10.1007/s10570-010-9405-y

Lavoine, 2012, Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review, Carbohydr Polym, 90, 735, 10.1016/j.carbpol.2012.05.026

Arola, 2013, The role of hemicellulose in nanofibrillated cellulose networks, Soft Matter, 9, 1319, 10.1039/C2SM26932E

Eronen, 2011, Interactions of structurally different hemicelluloses with nanofibrillar cellulose, Carbohydr Polym, 86, 1281, 10.1016/j.carbpol.2011.06.031

Atalla, 1984, Native cellulose – a composite of 2 distinct crystalline forms, Science, 223, 283, 10.1126/science.223.4633.283

Nishiyama, 2003, Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction, J Am Chem Soc, 125, 14300, 10.1021/ja037055w

Nishiyama, 2002, Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction, J Am Chem Soc, 124, 9074, 10.1021/ja0257319

Sugiyama, 1990, Transformation of valonia cellulose crystals by an alkaline hydrothermal treatment, Macromolecules, 23, 3196, 10.1021/ma00214a029

Lee, 2012, High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose, ACS Appl Mater Interfaces, 4, 4078, 10.1021/am300852a

Eichhorn, 2006, Modelling the crystalline deformation of native and regenerated cellulose, Cellulose, 13, 291, 10.1007/s10570-006-9046-3

Tanaka, 2006, Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation, Cellulose, 13, 509, 10.1007/s10570-006-9068-x

Tashiro, 1991, Theoretical evaluation of 3-dimensional elastic constants of native and regenerated celluloses – role of hydrogen bonds, Polymer, 32, 1516, 10.1016/0032-3861(91)90435-L

Meyer, 1942

Meredith, 1959, Mechanical properties of cellulose and cellulose derivatives, 213

Lyons, 1958, Theoretical values of the dynamic stretch moduli of fiber-forming polymers, J Appl Phys, 29, 1429, 10.1063/1.1722962

Lyons, 1959, Theoretical value of the dynamic stretch modulus of cellulose, J Appl Phys, 30, 796, 10.1063/1.1735240

Bergenstrahle, 2007, Thermal response in crystalline I beta cellulose: a molecular dynamics study, J Phys Chem B, 111, 9138, 10.1021/jp072258i

Gillis, 1969, Effect of hydrogen bonds on the axial stiffnes of crystalline native cellulose, J Polym Sci Part A-2: Polym Phys, 7, 783, 10.1002/pol.1969.160070504

Wohlert, 2012, Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence, Cellulose, 19, 1821, 10.1007/s10570-012-9774-5

Mark, 1943, Molecular factors affecting mechanical behaviour, 990

Mark, 1967

de Boer, 1936, The influence of van der Waals’ forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins, Trans Faraday Soc, 32, 10, 10.1039/tf9363200010

Wainwright, 1982

Roylance, 1996

Hsieh, 2008, An estimation of the Young’s modulus of bacterial cellulose filaments, Cellulose, 15, 507, 10.1007/s10570-008-9206-8

Rusli, 2008, Determination of the stiffness of cellulose nanowhiskers and the fiber–matrix interface in a nanocomposite using Raman spectroscopy, Appl Phys Lett, 93, 10.1063/1.2963491

Matsuo, 1990, Effect of orientation distribution and crystallinity on the measurement by X-ray-diffraction of the crystal-lattice moduli of Cellulose-I and Cellulose-II, Macromolecules, 23, 3266, 10.1021/ma00215a012

Sakurada, 1962, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J Polym Sci, 57, 651, 10.1002/pol.1962.1205716551

Sturcova, 2005, Elastic modulus and stress-transfer properties of tunicate cellulose whiskers, Biomacromolecules, 6, 1055, 10.1021/bm049291k

Sehaqui, 2012, Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing, ACS Appl Mater Interfaces, 4, 1043, 10.1021/am2016766

Saito, 2013, An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation, Biomacromolecules, 14, 248, 10.1021/bm301674e

Personal communication.

Jonas, 1998, Production and application of microbial cellulose, Polym Degrad Stabil, 59, 101, 10.1016/S0141-3910(97)00197-3

Zimmermann, 2010, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydr Polym, 79, 1086, 10.1016/j.carbpol.2009.10.045

Boldizar, 1987, Prehydrolyzed cellulose as reinforcing filler for thermplastics, Int J Polym Mater, 11, 229, 10.1080/00914038708078665

Favier, 1995, Polymer nanocomposites reinforced by cellulose whiskers, Macromolecules, 28, 6365, 10.1021/ma00122a053

Favier, 1995, Nanocomposite materials from latex and cellulose whiskers, Polym Adv Technol, 6, 351, 10.1002/pat.1995.220060514

Dufresne, 1998, Improvement of starch film performances using cellulose microfibrils, Macromolecules, 31, 2693, 10.1021/ma971532b

Gindl, 2004, Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose, Compos Sci Technol, 64, 2407, 10.1016/j.compscitech.2004.05.001

Gea, 2010, Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in-situ process, Mater Lett, 64, 901, 10.1016/j.matlet.2010.01.042

Stevanic, 2011, Bacterial nanocellulose-reinforced arabinoxylan films, J Appl Polym Sci, 122, 1030, 10.1002/app.34217

Lee, 2012, Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites, Compos Sci Technol, 72, 1646, 10.1016/j.compscitech.2012.07.003

Hu, 2009, Effect of coupling treatment on mechanical properties of bacterial cellulose nanofibre-reinforced UPR ecocomposites, Mater Lett, 63, 1952, 10.1016/j.matlet.2009.06.015

Quero, 2012, Interfaces in cross-linked and grafted bacterial cellulose/poly(lactic acid) resin composites, J Polym Environ, 20, 916, 10.1007/s10924-012-0487-5

Wan, 2009, Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites, Compos Sci Technol, 69, 1212, 10.1016/j.compscitech.2009.02.024

Martins, 2009, New biocomposites based on thermoplastic starch and bacterial cellulose, Compos Sci Technol, 69, 2163, 10.1016/j.compscitech.2009.05.012

Trovatti, 2010, Novel bacterial cellulose-acrylic resin nanocomposites, Compos Sci Technol, 70, 1148, 10.1016/j.compscitech.2010.02.031

Zhijiang, 2011, Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate), Mater Lett, 65, 182, 10.1016/j.matlet.2010.09.055

Soykeabkaew, 2012, Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites, Compos Sci Technol, 72, 845, 10.1016/j.compscitech.2012.02.015

Lee, 2009, Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties, Compos Sci Technol, 69, 2724, 10.1016/j.compscitech.2009.08.016

Retegi, 2012, Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC), Cellulose, 19, 103, 10.1007/s10570-011-9598-8

Ten, 2010, Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites, Polymer, 51, 2652, 10.1016/j.polymer.2010.04.007

Gu, 2010, Bacterial cellulose reinforced thermoplastic composites: preliminary evaluation of fabrication and performance, BioResources, 5, 2195, 10.15376/biores.5.4.2195-2207

Quero, 2010, Optimization of the mechanical performance of bacterial cellulose/poly(l-lactic) acid composites, ACS Appl Mater Interfaces, 2, 321, 10.1021/am900817f

Li, 2010, Preparation and characterization of bacterial cellulose/polylactide nanocomposites, Polym-Plast Technol Eng, 49, 141, 10.1080/03602550903284198

Peng, 2011, Preparation and properties of polystyrene/bacterial cellulose nanocomposites by in situ polymerization, J Macromol Sci Part B Phys, 50, 1921, 10.1080/00222348.2011.556931

Tome, 2011, Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach, Green Chem, 13, 419, 10.1039/c0gc00545b

Zhou, 2009, Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating, Soft Matter, 5, 4124, 10.1039/b907838j

Yano, 2005, Optically transparent composites reinforced with networks of bacterial nanofibers, Adv Mater, 17, 153, 10.1002/adma.200400597

Lin, 2013, New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization, Ind Eng Chem Res, 52, 2869, 10.1021/ie303297b

Nakagaito, 2005, Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Appl Phys A-Mater Sci Process, 80, 93, 10.1007/s00339-004-2932-3

Montrikittiphant T, Tang M, Lee K-Y, Williams CK, Bismarck A. Bacterial Cellulose Nanopaper as Reinforcement for Polylactide Composites: Renewable Thermoplastic NanoPaPreg. Macromol Rapid Commun; 2014. DOI: http://dx.doi.org/10.1002/marc.201400181 [in press].

Lee, 2012, Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid, Cellulose, 19, 891, 10.1007/s10570-012-9680-x

Hietala, 2013, Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion, Euro Polym J, 49, 950, 10.1016/j.eurpolymj.2012.10.016

Dufresne, 2000, Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites, J Appl Polym Sci, 76, 2080, 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U

Nakagaito, 2004, The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Appl Phys A-Mater Sci Process, 78, 547, 10.1007/s00339-003-2453-5

Zimmermann, 2004, Cellulose fibrils for polymer reinforcement, Adv Eng Mater, 6, 754, 10.1002/adem.200400097

Henriksson, 2007, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde, J Appl Polym Sci, 106, 2817, 10.1002/app.26946

Stevanic, 2012, Arabinoxylan/nanofibrillated cellulose composite films, J Mater Sci, 47, 6724, 10.1007/s10853-012-6615-8

Mikkonen, 2012, Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose, Cellulose, 19, 467, 10.1007/s10570-012-9655-y

Mondragon, 2008, Biocomposites of thermoplastic starch with surfactant, Carbohydr Polym, 74, 201, 10.1016/j.carbpol.2008.02.004

Visakh, 2012, Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties, Compos A-Appl Sci Manuf, 43, 735, 10.1016/j.compositesa.2011.12.015

Suzuki, 2013, Development of continuous process enabling nanofibrillation of pulp and melt compounding, Cellulose, 20, 201, 10.1007/s10570-012-9843-9

Pullawan, 2010, Discrimination of matrix–fibre interactions in all-cellulose nanocomposites, Compos Sci Technol, 70, 2325, 10.1016/j.compscitech.2010.09.013

Qiu, 2012, Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol, Compos Sci Technol, 72, 1588, 10.1016/j.compscitech.2012.06.010

Mikkonen, 2010, Glucomannan composite films with cellulose nanowhiskers, Cellulose, 17, 69, 10.1007/s10570-009-9380-3

Hossain, 2012, High cellulose nanowhisker content composites through cellosize bonding, Soft Matter, 8, 12099, 10.1039/c2sm26912k

Lu, 2010, Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment, J Polym Sci B-Polym Phys, 48, 153, 10.1002/polb.21875

Littunen, 2013, Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites, Carbohydr Polym, 91, 183, 10.1016/j.carbpol.2012.08.032

Shibata, 2010, Preparation and properties of biocomposites composed of bio-based epoxy resin, tannic acid, and microfibrillated cellulose, J Polym Sci B-Polym Phys, 48, 425, 10.1002/polb.21903

Shibata, 2011, Preparation and properties of biocomposites composed of epoxidized soybean oil, tannic acid, and microfibrillated cellulose, J Appl Polym Sci, 120, 273, 10.1002/app.33082

Lu, 2008, Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials, Compos A-Appl Sci Manuf, 39, 738, 10.1016/j.compositesa.2008.02.003

Nguyen Dang, 2013, Processable polyaniline suspensions through in situ polymerization onto nanocellulose, Euro Polym J, 49, 335, 10.1016/j.eurpolymj.2012.10.026

Nakagaito, 2009, Production of microfibrillated cellulose (MFC)-reinforcced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process, Compos Sci Technol, 69, 1293, 10.1016/j.compscitech.2009.03.004

Kim, 2001, Foaming of aliphatic polyester using chemical blowing agent, J Appl Polym Sci, 81, 2443, 10.1002/app.1686

Hansen, 2012, Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan, Cellulose, 19, 2015, 10.1007/s10570-012-9764-7

Al-Turaif, 2013, Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose, Prog Org Coat, 76, 477, 10.1016/j.porgcoat.2012.11.001

Jiang, 2008, Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing, J Compos Mater, 42, 2629, 10.1177/0021998308096327

Lonnberg, 2011, Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties, ACS Appl Mater Interfaces, 3, 1426, 10.1021/am2001828

Suryanegara, 2009, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos Sci Technol, 69, 1187, 10.1016/j.compscitech.2009.02.022

Nakagaito, 2008, Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers, Cellulose, 15, 323, 10.1007/s10570-007-9168-2

Srithep, 2013, Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites, Polym Degrad Stabil, 98, 1439, 10.1016/j.polymdegradstab.2013.05.006

Sehaqui, 2011, Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix, Soft Matter, 7, 7342, 10.1039/c1sm05325f

Henriksson, 2011, Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates, Compos Sci Technol, 71, 13, 10.1016/j.compscitech.2010.09.006

Jonoobi, 2014, Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties, Compos A Appl Sci Manuf, 58, 30, 10.1016/j.compositesa.2013.11.010

Jonoobi, 2010, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Compos Sci Technol, 70, 1742, 10.1016/j.compscitech.2010.07.005

Svagan, 2007, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness, Biomacromolecules, 8, 2556, 10.1021/bm0703160

Ansari, 2014, Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate, Compos A: Appl Sci Manuf, 63, 35, 10.1016/j.compositesa.2014.03.017

Hornung, 2006, Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1), Eng Life Sci, 6, 537, 10.1002/elsc.200620162

Hornung, 2006, Optimizing the production of bacterial cellulose in surface culture: evaluation of product movement influences on the bioreaction (Part 2), Eng Life Sci, 6, 546, 10.1002/elsc.200620163

Hornung, 2007, Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (Part 3), Eng Life Sci, 7, 35, 10.1002/elsc.200620164

Phisalaphong, 2013, Application and products – nata de coco, 143

Thomason, 1996, Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene. 1. Tensile and flexural modulus, Compos A – Appl Sci Manuf, 27, 477, 10.1016/1359-835X(95)00065-A

Thomason, 1996, Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene. 3. Strength and strain at failure, Compos A – Appl Sci Manuf, 27, 1075, 10.1016/1359-835X(96)00066-8

Coleman, 2006, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, 44, 1624, 10.1016/j.carbon.2006.02.038

Coleman, 2006, Mechanical reinforcement of polymers using carbon nanotubes, Adv Mater, 18, 689, 10.1002/adma.200501851

Wu, 2007, A high strength nanocomposite based on microcrystalline cellulose and polyurethane, Biomacromolecules, 8, 3687, 10.1021/bm701061t

Pei, 2011, Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals, Macromolecules, 44, 4422, 10.1021/ma200318k

Favier, 1997, Mechanical percolation in cellulose whisker nanocomposites, Polym Eng Sci, 37, 1732, 10.1002/pen.11821

Boufi, 2014, Mechanical performance and transparency of nanocellulose reinforced polymer nanocomposites, Macromol Mater Eng, 299, 560, 10.1002/mame.201300232

Samir, 2005, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6, 612, 10.1021/bm0493685

Aitomäki, 2014, Reinforcing efficiency of nanocellulose in polymer nanocomposites, vol. 2

Aitomäki Y, Oksman K. Reinforcing efficiency of nanocellulose in polymers. Reactive Funct Polym; 2014. http://dx.doi.org/10.1016/j.reactfunctpolym.2014.08.010 [in press].

Robinson, 1994, The influence of fiber aspect ratio on the deformation of discontinuous fiber-reinforced composites, J Mater Sci, 29, 4663, 10.1007/BF00356507

Chow, 1980, The effect of particle shape on the mechanical properties of filled polymers, J Mater Sci, 15, 1873, 10.1007/BF00550613

Asloun, 1989, Stress transfer in single-fibre composites – effect on adhesion, elastic modulus of fiber and matrix, and polymer-chain mobility, J Mater Sci, 24, 1835, 10.1007/BF01105713

Cox, 1952, The elasticity and strength of paper and other fibrous materials, Br J Appl Phys, 3, 72, 10.1088/0508-3443/3/3/302

Krenchel, 1964

Cheng, 2009, Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy, Compos A Appl Sci Manuf, 40, 583, 10.1016/j.compositesa.2009.02.011

Seidel, 2011

Kelly, 1965, Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum, J Mech Phys Solids, 13, 329, 10.1016/0022-5096(65)90035-9

Lee, 2012, Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder, Compos Sci Technol, 72, 1479, 10.1016/j.compscitech.2012.06.014

Fukuda, 1981, A probabilistic theory for the strength of short fiber composites, J Mater Sci, 16, 1088, 10.1007/BF00542756

Butchosa, 2013, Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity, Green Chem, 15, 3404, 10.1039/c3gc41700j

Sehaqui, 2010, Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures, Biomacromolecules, 11, 2195, 10.1021/bm100490s

Blaker JJ, Lee K-Y, Walters M, Drouet M, Bismarck A. Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites. React Funct Polym. http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.006.

Zakir Hossain KM, Felfel RM, Rudd CD, Thielemans W, Ahmed I. The effect of cellulose nanowhiskers on the flexural properties of self-reinforced polylactic acid composites. React Funct Polym. http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.012.