On the use of nanocellulose as reinforcement in polymer matrix composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ragauskas, 2006, The path forward for biofuels and biomaterials, Science, 311, 484, 10.1126/science.1114736
Bhardwaj, 2007, Advances in the properties of polylactides based materials: a review, J Biobased Mater Bioenergy, 1, 191, 10.1166/jbmb.2007.023
Freudenberg, 1932, The relation of cellulose to lignin in wood, J Chem Educ, 9, 1171, 10.1021/ed009p1171
Bismarck, 2005, Plant fibers as reinforcement for green composites, 37
Oksman, 2001, High quality flax fibre composites manufactured by the resin transfer moulding process, J Reinf Plast Compos, 20, 621, 10.1177/073168401772678634
Wielage, 1999, Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene, Thermochim Acta, 337, 169, 10.1016/S0040-6031(99)00161-6
Thomason, 2010, Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced composites, Polym Compos, 31, 1525, 10.1002/pc.20939
Cichocki, 2002, Thermoelastic anisotropy of a natural fiber, Compos Sci Technol, 62, 669, 10.1016/S0266-3538(02)00011-8
Stamm, 1953
Schwartz, 1945, Pulp-reinforced plastics, South Pulp Paper J, 8, 19
Cox, 1944, Paper-base plastics part 1. The preparation of phenolic laminated boards, J Soc Chem Indus, 63, 150
Eichhorn, 2010, Review: current international research into cellulose nanofibres and nanocomposites, J Mater Sci, 45, 1, 10.1007/s10853-009-3874-0
Siqueira, 2010, Cellulosic bionanocomposites: a review of preparation, Propertie Appl Polym, 2, 728
Sain, 2006, Introduction to cellulose nanocomposites, Cell Nanocompos: Proc Characterization Propertie, 938, 2, 10.1021/bk-2006-0938.ch001
Klemm, 2005, Cellulose: fascinating biopolymer and sustainable raw material, Angew Chem-Int Edit, 44, 3358, 10.1002/anie.200460587
Klemm, 2011, Nanocelluloses: a new family of nature-based materials, Angew Chem-Int Edit, 50, 5438, 10.1002/anie.201001273
Dufresne, 2013, Nanocellulose: a new ageless bionanomaterial, Mater Today, 16, 220, 10.1016/j.mattod.2013.06.004
Kalia, 2011, Cellulose-based bio- and nanocomposites: a review, Int J Polym Sci, 10.1155/2011/837875
Henriksson, 2008, Cellulose nanopaper structures of high toughness, Biomacromolecules, 9, 1579, 10.1021/bm800038n
Preston, 1948, An electron microscope study of cellulose in the wall of Valonia ventricosa, Nature, 162, 665, 10.1038/162665a0
Belton, 1989, High-resolution solid-state C-13 nuclear magnetic-resonance spectroscopy of tunicin, an animal cellulose, Macromolecules, 22, 1615, 10.1021/ma00194a019
Turbak, 1983, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J Appl Polym Sci Appl Polym Sym, 37, 459
Herrick, 1983, Microfibrillated cellulose: morphology and accessibility, vol. 37, 797
Iguchi, 2000, Bacterial cellulose – a masterpiece of nature’s arts, J Mater Sci, 35, 261, 10.1023/A:1004775229149
Gama, 2013
Brown, 1886, The chemical action of pure cultivations of bacterium aceti, J Chem Soc Trans, 49, 172, 10.1039/CT8864900172
Malcolm Brown, 1989, Bacterial cellulose, 145
Klemm, 2009, Nanocellulose materials – different cellulose, different functionality, Macromol Symp, 280, 60, 10.1002/masy.200950608
Blaker, 2011, Hierarchical composites made entirely from renewable resources, J Biobased Mater Bioenergy, 5, 1, 10.1166/jbmb.2011.1113
Lee, 2014, More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites, Macromol Biosci, 14, 10, 10.1002/mabi.201300298
Wuhrmann, 1946, Elektronenmikroskopische Untersuchungen an Zellulosefasern nach Behandlung mit Ultraschall, Experientia, 2, 105, 10.1007/BF02172568
Iwamoto, 2005, Optically transparent composites reinforced with plant fiber-based nanofibers, Appl Phys A-Mater Sci Process, 81, 1109, 10.1007/s00339-005-3316-z
Siro, 2010, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17, 459, 10.1007/s10570-010-9405-y
Lavoine, 2012, Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review, Carbohydr Polym, 90, 735, 10.1016/j.carbpol.2012.05.026
Arola, 2013, The role of hemicellulose in nanofibrillated cellulose networks, Soft Matter, 9, 1319, 10.1039/C2SM26932E
Eronen, 2011, Interactions of structurally different hemicelluloses with nanofibrillar cellulose, Carbohydr Polym, 86, 1281, 10.1016/j.carbpol.2011.06.031
Atalla, 1984, Native cellulose – a composite of 2 distinct crystalline forms, Science, 223, 283, 10.1126/science.223.4633.283
Nishiyama, 2003, Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction, J Am Chem Soc, 125, 14300, 10.1021/ja037055w
Nishiyama, 2002, Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction, J Am Chem Soc, 124, 9074, 10.1021/ja0257319
Sugiyama, 1990, Transformation of valonia cellulose crystals by an alkaline hydrothermal treatment, Macromolecules, 23, 3196, 10.1021/ma00214a029
Lee, 2012, High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose, ACS Appl Mater Interfaces, 4, 4078, 10.1021/am300852a
Eichhorn, 2006, Modelling the crystalline deformation of native and regenerated cellulose, Cellulose, 13, 291, 10.1007/s10570-006-9046-3
Tanaka, 2006, Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation, Cellulose, 13, 509, 10.1007/s10570-006-9068-x
Tashiro, 1991, Theoretical evaluation of 3-dimensional elastic constants of native and regenerated celluloses – role of hydrogen bonds, Polymer, 32, 1516, 10.1016/0032-3861(91)90435-L
Meyer, 1942
Meredith, 1959, Mechanical properties of cellulose and cellulose derivatives, 213
Lyons, 1958, Theoretical values of the dynamic stretch moduli of fiber-forming polymers, J Appl Phys, 29, 1429, 10.1063/1.1722962
Lyons, 1959, Theoretical value of the dynamic stretch modulus of cellulose, J Appl Phys, 30, 796, 10.1063/1.1735240
Bergenstrahle, 2007, Thermal response in crystalline I beta cellulose: a molecular dynamics study, J Phys Chem B, 111, 9138, 10.1021/jp072258i
Gillis, 1969, Effect of hydrogen bonds on the axial stiffnes of crystalline native cellulose, J Polym Sci Part A-2: Polym Phys, 7, 783, 10.1002/pol.1969.160070504
Wohlert, 2012, Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence, Cellulose, 19, 1821, 10.1007/s10570-012-9774-5
Mark, 1943, Molecular factors affecting mechanical behaviour, 990
Mark, 1967
de Boer, 1936, The influence of van der Waals’ forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins, Trans Faraday Soc, 32, 10, 10.1039/tf9363200010
Wainwright, 1982
Roylance, 1996
Hsieh, 2008, An estimation of the Young’s modulus of bacterial cellulose filaments, Cellulose, 15, 507, 10.1007/s10570-008-9206-8
Rusli, 2008, Determination of the stiffness of cellulose nanowhiskers and the fiber–matrix interface in a nanocomposite using Raman spectroscopy, Appl Phys Lett, 93, 10.1063/1.2963491
Matsuo, 1990, Effect of orientation distribution and crystallinity on the measurement by X-ray-diffraction of the crystal-lattice moduli of Cellulose-I and Cellulose-II, Macromolecules, 23, 3266, 10.1021/ma00215a012
Sakurada, 1962, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J Polym Sci, 57, 651, 10.1002/pol.1962.1205716551
Sturcova, 2005, Elastic modulus and stress-transfer properties of tunicate cellulose whiskers, Biomacromolecules, 6, 1055, 10.1021/bm049291k
Sehaqui, 2012, Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing, ACS Appl Mater Interfaces, 4, 1043, 10.1021/am2016766
Saito, 2013, An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation, Biomacromolecules, 14, 248, 10.1021/bm301674e
Personal communication.
Jonas, 1998, Production and application of microbial cellulose, Polym Degrad Stabil, 59, 101, 10.1016/S0141-3910(97)00197-3
Zimmermann, 2010, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydr Polym, 79, 1086, 10.1016/j.carbpol.2009.10.045
Boldizar, 1987, Prehydrolyzed cellulose as reinforcing filler for thermplastics, Int J Polym Mater, 11, 229, 10.1080/00914038708078665
Favier, 1995, Polymer nanocomposites reinforced by cellulose whiskers, Macromolecules, 28, 6365, 10.1021/ma00122a053
Favier, 1995, Nanocomposite materials from latex and cellulose whiskers, Polym Adv Technol, 6, 351, 10.1002/pat.1995.220060514
Dufresne, 1998, Improvement of starch film performances using cellulose microfibrils, Macromolecules, 31, 2693, 10.1021/ma971532b
Gindl, 2004, Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose, Compos Sci Technol, 64, 2407, 10.1016/j.compscitech.2004.05.001
Gea, 2010, Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in-situ process, Mater Lett, 64, 901, 10.1016/j.matlet.2010.01.042
Stevanic, 2011, Bacterial nanocellulose-reinforced arabinoxylan films, J Appl Polym Sci, 122, 1030, 10.1002/app.34217
Lee, 2012, Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites, Compos Sci Technol, 72, 1646, 10.1016/j.compscitech.2012.07.003
Hu, 2009, Effect of coupling treatment on mechanical properties of bacterial cellulose nanofibre-reinforced UPR ecocomposites, Mater Lett, 63, 1952, 10.1016/j.matlet.2009.06.015
Quero, 2012, Interfaces in cross-linked and grafted bacterial cellulose/poly(lactic acid) resin composites, J Polym Environ, 20, 916, 10.1007/s10924-012-0487-5
Wan, 2009, Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites, Compos Sci Technol, 69, 1212, 10.1016/j.compscitech.2009.02.024
Martins, 2009, New biocomposites based on thermoplastic starch and bacterial cellulose, Compos Sci Technol, 69, 2163, 10.1016/j.compscitech.2009.05.012
Trovatti, 2010, Novel bacterial cellulose-acrylic resin nanocomposites, Compos Sci Technol, 70, 1148, 10.1016/j.compscitech.2010.02.031
Zhijiang, 2011, Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate), Mater Lett, 65, 182, 10.1016/j.matlet.2010.09.055
Soykeabkaew, 2012, Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites, Compos Sci Technol, 72, 845, 10.1016/j.compscitech.2012.02.015
Lee, 2009, Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties, Compos Sci Technol, 69, 2724, 10.1016/j.compscitech.2009.08.016
Retegi, 2012, Sustainable optically transparent composites based on epoxidized soy-bean oil (ESO) matrix and high contents of bacterial cellulose (BC), Cellulose, 19, 103, 10.1007/s10570-011-9598-8
Ten, 2010, Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites, Polymer, 51, 2652, 10.1016/j.polymer.2010.04.007
Gu, 2010, Bacterial cellulose reinforced thermoplastic composites: preliminary evaluation of fabrication and performance, BioResources, 5, 2195, 10.15376/biores.5.4.2195-2207
Quero, 2010, Optimization of the mechanical performance of bacterial cellulose/poly(l-lactic) acid composites, ACS Appl Mater Interfaces, 2, 321, 10.1021/am900817f
Li, 2010, Preparation and characterization of bacterial cellulose/polylactide nanocomposites, Polym-Plast Technol Eng, 49, 141, 10.1080/03602550903284198
Peng, 2011, Preparation and properties of polystyrene/bacterial cellulose nanocomposites by in situ polymerization, J Macromol Sci Part B Phys, 50, 1921, 10.1080/00222348.2011.556931
Tome, 2011, Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach, Green Chem, 13, 419, 10.1039/c0gc00545b
Zhou, 2009, Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating, Soft Matter, 5, 4124, 10.1039/b907838j
Yano, 2005, Optically transparent composites reinforced with networks of bacterial nanofibers, Adv Mater, 17, 153, 10.1002/adma.200400597
Lin, 2013, New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization, Ind Eng Chem Res, 52, 2869, 10.1021/ie303297b
Nakagaito, 2005, Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Appl Phys A-Mater Sci Process, 80, 93, 10.1007/s00339-004-2932-3
Montrikittiphant T, Tang M, Lee K-Y, Williams CK, Bismarck A. Bacterial Cellulose Nanopaper as Reinforcement for Polylactide Composites: Renewable Thermoplastic NanoPaPreg. Macromol Rapid Commun; 2014. DOI: http://dx.doi.org/10.1002/marc.201400181 [in press].
Lee, 2012, Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid, Cellulose, 19, 891, 10.1007/s10570-012-9680-x
Hietala, 2013, Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion, Euro Polym J, 49, 950, 10.1016/j.eurpolymj.2012.10.016
Dufresne, 2000, Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites, J Appl Polym Sci, 76, 2080, 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U
Nakagaito, 2004, The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Appl Phys A-Mater Sci Process, 78, 547, 10.1007/s00339-003-2453-5
Zimmermann, 2004, Cellulose fibrils for polymer reinforcement, Adv Eng Mater, 6, 754, 10.1002/adem.200400097
Henriksson, 2007, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde, J Appl Polym Sci, 106, 2817, 10.1002/app.26946
Stevanic, 2012, Arabinoxylan/nanofibrillated cellulose composite films, J Mater Sci, 47, 6724, 10.1007/s10853-012-6615-8
Mikkonen, 2012, Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose, Cellulose, 19, 467, 10.1007/s10570-012-9655-y
Mondragon, 2008, Biocomposites of thermoplastic starch with surfactant, Carbohydr Polym, 74, 201, 10.1016/j.carbpol.2008.02.004
Visakh, 2012, Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties, Compos A-Appl Sci Manuf, 43, 735, 10.1016/j.compositesa.2011.12.015
Suzuki, 2013, Development of continuous process enabling nanofibrillation of pulp and melt compounding, Cellulose, 20, 201, 10.1007/s10570-012-9843-9
Pullawan, 2010, Discrimination of matrix–fibre interactions in all-cellulose nanocomposites, Compos Sci Technol, 70, 2325, 10.1016/j.compscitech.2010.09.013
Qiu, 2012, Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol, Compos Sci Technol, 72, 1588, 10.1016/j.compscitech.2012.06.010
Mikkonen, 2010, Glucomannan composite films with cellulose nanowhiskers, Cellulose, 17, 69, 10.1007/s10570-009-9380-3
Hossain, 2012, High cellulose nanowhisker content composites through cellosize bonding, Soft Matter, 8, 12099, 10.1039/c2sm26912k
Lu, 2010, Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment, J Polym Sci B-Polym Phys, 48, 153, 10.1002/polb.21875
Littunen, 2013, Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites, Carbohydr Polym, 91, 183, 10.1016/j.carbpol.2012.08.032
Shibata, 2010, Preparation and properties of biocomposites composed of bio-based epoxy resin, tannic acid, and microfibrillated cellulose, J Polym Sci B-Polym Phys, 48, 425, 10.1002/polb.21903
Shibata, 2011, Preparation and properties of biocomposites composed of epoxidized soybean oil, tannic acid, and microfibrillated cellulose, J Appl Polym Sci, 120, 273, 10.1002/app.33082
Lu, 2008, Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials, Compos A-Appl Sci Manuf, 39, 738, 10.1016/j.compositesa.2008.02.003
Nguyen Dang, 2013, Processable polyaniline suspensions through in situ polymerization onto nanocellulose, Euro Polym J, 49, 335, 10.1016/j.eurpolymj.2012.10.026
Nakagaito, 2009, Production of microfibrillated cellulose (MFC)-reinforcced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process, Compos Sci Technol, 69, 1293, 10.1016/j.compscitech.2009.03.004
Kim, 2001, Foaming of aliphatic polyester using chemical blowing agent, J Appl Polym Sci, 81, 2443, 10.1002/app.1686
Hansen, 2012, Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan, Cellulose, 19, 2015, 10.1007/s10570-012-9764-7
Al-Turaif, 2013, Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose, Prog Org Coat, 76, 477, 10.1016/j.porgcoat.2012.11.001
Jiang, 2008, Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing, J Compos Mater, 42, 2629, 10.1177/0021998308096327
Lonnberg, 2011, Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties, ACS Appl Mater Interfaces, 3, 1426, 10.1021/am2001828
Suryanegara, 2009, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos Sci Technol, 69, 1187, 10.1016/j.compscitech.2009.02.022
Nakagaito, 2008, Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers, Cellulose, 15, 323, 10.1007/s10570-007-9168-2
Srithep, 2013, Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites, Polym Degrad Stabil, 98, 1439, 10.1016/j.polymdegradstab.2013.05.006
Sehaqui, 2011, Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix, Soft Matter, 7, 7342, 10.1039/c1sm05325f
Henriksson, 2011, Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates, Compos Sci Technol, 71, 13, 10.1016/j.compscitech.2010.09.006
Jonoobi, 2014, Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties, Compos A Appl Sci Manuf, 58, 30, 10.1016/j.compositesa.2013.11.010
Jonoobi, 2010, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Compos Sci Technol, 70, 1742, 10.1016/j.compscitech.2010.07.005
Svagan, 2007, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness, Biomacromolecules, 8, 2556, 10.1021/bm0703160
Ansari, 2014, Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate, Compos A: Appl Sci Manuf, 63, 35, 10.1016/j.compositesa.2014.03.017
Hornung, 2006, Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1), Eng Life Sci, 6, 537, 10.1002/elsc.200620162
Hornung, 2006, Optimizing the production of bacterial cellulose in surface culture: evaluation of product movement influences on the bioreaction (Part 2), Eng Life Sci, 6, 546, 10.1002/elsc.200620163
Hornung, 2007, Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (Part 3), Eng Life Sci, 7, 35, 10.1002/elsc.200620164
Phisalaphong, 2013, Application and products – nata de coco, 143
Thomason, 1996, Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene. 1. Tensile and flexural modulus, Compos A – Appl Sci Manuf, 27, 477, 10.1016/1359-835X(95)00065-A
Thomason, 1996, Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene. 3. Strength and strain at failure, Compos A – Appl Sci Manuf, 27, 1075, 10.1016/1359-835X(96)00066-8
Coleman, 2006, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, 44, 1624, 10.1016/j.carbon.2006.02.038
Coleman, 2006, Mechanical reinforcement of polymers using carbon nanotubes, Adv Mater, 18, 689, 10.1002/adma.200501851
Wu, 2007, A high strength nanocomposite based on microcrystalline cellulose and polyurethane, Biomacromolecules, 8, 3687, 10.1021/bm701061t
Pei, 2011, Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals, Macromolecules, 44, 4422, 10.1021/ma200318k
Favier, 1997, Mechanical percolation in cellulose whisker nanocomposites, Polym Eng Sci, 37, 1732, 10.1002/pen.11821
Boufi, 2014, Mechanical performance and transparency of nanocellulose reinforced polymer nanocomposites, Macromol Mater Eng, 299, 560, 10.1002/mame.201300232
Samir, 2005, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6, 612, 10.1021/bm0493685
Aitomäki, 2014, Reinforcing efficiency of nanocellulose in polymer nanocomposites, vol. 2
Aitomäki Y, Oksman K. Reinforcing efficiency of nanocellulose in polymers. Reactive Funct Polym; 2014. http://dx.doi.org/10.1016/j.reactfunctpolym.2014.08.010 [in press].
Robinson, 1994, The influence of fiber aspect ratio on the deformation of discontinuous fiber-reinforced composites, J Mater Sci, 29, 4663, 10.1007/BF00356507
Chow, 1980, The effect of particle shape on the mechanical properties of filled polymers, J Mater Sci, 15, 1873, 10.1007/BF00550613
Asloun, 1989, Stress transfer in single-fibre composites – effect on adhesion, elastic modulus of fiber and matrix, and polymer-chain mobility, J Mater Sci, 24, 1835, 10.1007/BF01105713
Cox, 1952, The elasticity and strength of paper and other fibrous materials, Br J Appl Phys, 3, 72, 10.1088/0508-3443/3/3/302
Krenchel, 1964
Cheng, 2009, Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy, Compos A Appl Sci Manuf, 40, 583, 10.1016/j.compositesa.2009.02.011
Seidel, 2011
Kelly, 1965, Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum, J Mech Phys Solids, 13, 329, 10.1016/0022-5096(65)90035-9
Lee, 2012, Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder, Compos Sci Technol, 72, 1479, 10.1016/j.compscitech.2012.06.014
Fukuda, 1981, A probabilistic theory for the strength of short fiber composites, J Mater Sci, 16, 1088, 10.1007/BF00542756
Butchosa, 2013, Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity, Green Chem, 15, 3404, 10.1039/c3gc41700j
Sehaqui, 2010, Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures, Biomacromolecules, 11, 2195, 10.1021/bm100490s
Blaker JJ, Lee K-Y, Walters M, Drouet M, Bismarck A. Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites. React Funct Polym. http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.006.