On the towers of torsion Bertrandias and Payan modules
Tóm tắt
For an odd prime p, let K/k be a Galois p-extension and S be a set of primes of k containing the primes lying over p. For the p
r
th roots
$${\mu _{{p^r}}}\left( K \right)$$
of unity in K, we describe the so-called Sha group Sha
S
(G(K/k),
$${\mu _{{p^r}}}\left( K \right)$$
) in terms of the Galois groups of certain subfields of K corresponding to S. As an application, we investigate a tower of extension fields
$${\left\{ {{k_{{T^i}}}} \right\}_i} \geqslant 0$$
where
$${k_{{T^{i + 1}}}}$$
is defined as the fixed field of a free part of the Galois group of the Bertrandias and Payan extension of
$${k_{{T^i}}}$$
over
$${k_{{T^i}}}$$
. This is called a tower of torsion parts of the Bertrandias and Payan extensions over k. We find a relation between the degrees
$${\left\{ {\left[ {{k_{{T^{i + 1}}}}:{k_{{T^i}}}} \right]} \right\}_{i \geqslant 0}}$$
over the towers. Using this formula we investigate whether the towers are stationary or not.
Tài liệu tham khảo
E. Artin and J. Tate, Class Field Theory, 2nd edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990.
F. Bertrandias and J. Payan, G-extensions et invariants cyclotomiques, Ann. Sci. Ecole Norm. Sup. 5 (1972), 517–543.
N. Bourbaki, Elements of Mathematics: Algebra I, Addison-Wesley Publishing Co., Reading Mass., 1974.
G. Gras, Sur les Z2-extensions d’un corps quadratique imaginaire, Ann. Inst. Fourier 33-4 (1983), 1–18.
G. Gras, Sur le module de Bertrandias–Payan dans une p-extension-noyau de capitulation, preprint.
J.-F. Jaulent, Sur la capitulation pour le module de Bertrandias–Payan, preprint.
J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999.
J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, 2nd edition, Springer-Verlag, Berlin, 2008.
T. Nguyen Quang Do, Sur la Zp-torsion de certains modules Galoisiens, Ann. Inst. Fourier (Grenoble) 36 (1986), 27–46.
T. Nguyen Quang Do, Sur la torsion de certains modules Galoisiens II, in Séminaire de Théorie des nombres, Paris 1986-87, Birkhäuser Boston, Boston, MA, 1988, pp. 271–297.
T. Nguyen Quang Do, Descent Galoisienne et capitulation entre modules de Bertrandias–Payan, preprint.