On the toric ideals of matroids of a fixed rank

Selecta Mathematica - Tập 27 - Trang 1-17 - 2021
Michał Lasoń1
1Institute of Mathematics of the Polish Academy of Sciences, Warszawa, Poland

Tóm tắt

In 1980 White conjectured that every element of the toric ideal of a matroid is generated by quadratic binomials corresponding to symmetric exchanges. We prove White’s conjecture for high degrees with respect to the rank. This extends our result (Lasoń and Michałek in Adv Math 259:1–12, 2014) confirming White’s conjecture ‘up to saturation’. Furthermore, we study degrees of Gröbner bases and Betti tables of the toric ideals of matroids of a fixed rank.

Tài liệu tham khảo

Blasiak, J.: The toric ideal of a graphic matroid is generated by quadrics. Combinatorica 28, 283–297 (2008) Blum, S.: Base-sortable matroids and Koszulness of semigroup rings. Eur. J. Comb. 22, 937–951 (2001) Bonin, J.: Basis-exchange properties of sparse paving matroids. Adv. Appl. Math. 50(1), 6–15 (2013) Chalopin, J., Chepoi, V., Osajda, D.: On two conjectures of Maurer concerning basis graphs of matroids. J. Comb. Theory Ser. B 114, 1–32 (2015) Conca, A.: Linear spaces, transversal polymatroids and ASL domains. J. Algebraic Comb. 25, 25–41 (2007) Conca, A., De Negri, E., Rossi, M.E.: Koszul Algebras and Regularity, Commutative Algebra, pp. 285–315. Springer, New York (2013) Conca, A.: Koszul algebras and their syzygies. Combinatorial Algebraic Geometry, Lecture Notes in Math., 2108, Fond. CIME/CIME Found. Subser., Springer, Cham, pp. 1–31 (2014) Dudek, A.: On k-partite hypergraphs with the induced \(\varepsilon \)-density property. Discrete Math. 310, 1524–1530 (2010) Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur. Standards Sect. B 69B, 67–72 (1965) Erdős, P.: On extremal problems of graphs and generalized graphs. Isr. J. Math. 2, 183–190 (1964) Farber, M., Richter, B., Shank, H.: Edge-disjoint spanning trees: a connectedness theorem. J. Graph Theory 8, 319–324 (1985) Gelfand, I.M., Goresky, R.M., MacPherson, R.D., Serganova, V.V.: Combinatorial geometries, convex polyhedra and Schubert cells. Adv. Math. 63, 301–316 (1987) Gijswijt, D., Regts, G.: Polyhedra with the integer Carathéodory property. J. Comb. Theory Ser. B 102, 62–70 (2012) Haase, C., Paffenholz, A., Piechnik, L.C., Santos, F.: Existence of unimodular triangulations - positive results, arXiv:1405.1687 Herzog, J., Hibi, T.: Discrete Polymatroids. J. Algebraic Comb. 16, 239–268 (2002) Hibi, T., Lasoń, M., Matsuda, K., Michałek, M., Vodička, M.: Gorenstein graphic matroids. Isr. J. Math. (to appear). arXiv:1905.05418 Kashiwabara, K.: The toric ideal of a matroid of rank 3 is generated by quadrics. Electron. J. Comb. 17, RP28 (2010) Lam, T., Postnikov, A.: Alcoved polytopes, I. Discrete Comput. Geom. 38(3), 453–478 (2007) Lasoń, M., Michałek, M.: On the toric ideal of a matroid. Adv. Math. 259, 1–12 (2014) Lasoń, M.: List coloring of matroids and base exchange properties. Eur. J. Comb. 49, 265–268 (2015) Lasoń, M., Michałek, M.: On algebraic properties of matroid polytopes, arXiv:2005.08359 Mauer, S.B.: Matroid basis graphs I. J. Comb. Theory Ser. B 14, 216–240 (1973) Mauer, S.B.: Matroid basis graphs II. J. Comb. Theory Ser. B 15, 121–145 (1973) McGuinness, S.: Frame matroids, toric ideals, and a conjecture of White. Adv. Appl. Math. 118, 102042 (2020) Nash-Williams, C.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. 39, 12 (1964) Oxley, J.G.: Matroid Theory. Oxford Science Publications. Oxford University Press, Oxford (1992) Schweig, J.: Toric ideals of lattice path matroids and polymatroids. J. Pure Appl. Algebra 215, 2660–2665 (2011) Shibata, K.: Toric ideals of series and parallel connections of matroids. J. Algebra Appl. 15(6), 1650106 (2016) Sturmfels, B.: Gröbner Bases and Convex Polytopes, Univ. Lecture Series 8. American Mathematical Society, Providence (1995) White, N.: The basis monomial ring of a matroid. Adv. Math. 24, 292–297 (1977) White, N.: A unique exchange property for bases. Linear Algebra Appl. 31, 81–91 (1980)