On the thermodynamics of degenerate Bose gas with delta-shaped interaction potential

Bulletin of the Lebedev Physics Institute - Tập 43 - Trang 365-368 - 2017
V. B. Bobrov1,2, A. G. Zagorodny3, S. A. Trigger1,4
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
2National Research University Moscow Power Engineering Institute, Moscow, Russia
3Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Within the self-consistent Hartree–Fock approximation, the equilibrium weakly nonideal Bose gas with a delta-shaped interaction potential in the presence of the Bose–Einstein condensate is considered without using quasi-averages. On this basis, using the virial theorem and diagram techniques of the perturbation theory for the equilibrium system in a macroscopic volume, the equation of state providing the isothermal compressibility finiteness, including the Bose–Einstein condensate domain of existence, is obtained.

Tài liệu tham khảo

M. H. Anderson, J. R. Ensher, M. R. Matthews, et al., Science 269, 198 (1995). C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases. 2-nd ed. (Cambridge University Press, Cambridge, 2008). N. N. Bogoliubov, Bull. Acad. Sci. USSR. Ser. Phys. 11, 77 (1947). E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2: Theory of Condensed State (Fizmatlit, Moscow, 2001; Pergamon, Oxford, 1984). V. B. Bobrov, P. P. J. M. Schram, and S. A. Trigger, Physica A208, 493 (1994). C.-H. Zhang and H. A. Fertig, Phys. Rev. A74, 023613 (2006). P. Navez and K. Bongs, Europhys. Lett. 88, 60008 (2009). A. M. Ettouhami, Progr. Theor. Phys. 127, 453 (2012). V. B. Bobrov, A. G. Zagorodny, and S. A. Triger, Fiz. Nizkikh Temp. 41, 1154 (2015). V. B. Bobrov, S. A. Triger, and P. Schram, Zh. Eksp. Teor.Fiz. 107, 1526 (1995). L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962). V. D. Ozrin, Teor.Mat. Fiz. 4, 66 (1970) [Theor.Math. Phys. 4, 678 (1970)]. O. K. Kalashnikov and E. S. Fradkin, Teor.Mat. Fiz. 5, 417 (1970) [Theor.Math. Phys. 5, 1250 (1970)]. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975). D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971) [in Russian].