On the stabilization of linear porous elastic materials by microtemperature effect and porous damping

Hanni Dridi1, Abdelhak Djebabla1
1Laboratory of Applied Mathematics, University Badji Mokhtar, P.O. Box 12, 23000, Annaba, Algeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

Ieşan, D., Quintanilla, R.: On a theory of thermoelasticity with microtemperatures. J. Therm. Stresses 23(3), 199–215 (2000)

Ieşan, D.: On a theory of micromorphic elastic solids with microtemperatures. J. Therm. Stresses 24(8), 737–752 (2001)

Ieşan, D.: Thermoelastic Models of Continua. Springer, Dordrecht (2004)

Ieşan, D., Quintanilla, R.: A theory of porous thermoviscoelastic mixtures. J. Therm. Stresses 30(7), 693–714 (2007)

Chiriţ a, S., Ciarletta, M., D’Apice, C.: On the theory of thermoelasticity with microtemperatures. J. Math. Anal. Appl. 397(1), 349–361 (2013)

Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16(4), 487–491 (2003)

Casas, P.S., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43(1–2), 33–47 (2005)

Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman and Hall, Boca Raton (1999)

Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Res. Commun. 32(6), 652–658 (2005)

Magaña, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43(11–12), 3414–3427 (2006)

Apalara, T.A.: Exponential decay in one-dimensional porous dissipation elasticity. Q. J. Mech. Appl. Math. 70(4), 553–572 (2017)

Apalara, T.A.: General decay of solutions in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 469, 457–471 (2017)

Fareh, A., Messaoudi, S.A.: Energy decay for a porous thermoelastic system with thermoelasticity of second sound and with a non-necessary positive definite energy. Appl. Math. Comput. 293, 493–507 (2017)

Muñoz Rivera, J.E., Quintanilla, R.: On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl. 338(2), 1296–1309 (2008)

Pamplona, P.X., Muñoz Rivera, J.E., Quintanilla, R.: Stabilization in elastic solids with voids. J. Math. Anal. Appl. 350(1), 37–49 (2009)

Pamplona, P.X., Muñoz Rivera, J.E., Quintanilla, R.: On the decay of solutions for porous-elastic systems with history. J. Math. Anal. Appl. 379(2), 682–705 (2011)

Santos, M.L., Junior, D.A.: On porous-elastic system with localized damping. Z. Angew. Math. Phys. 67(3), 1–18 (2016)

Santos, M.L., Campelo, A.D.S., Junior, D.A.: On the decay rates of porous elastic systems. J. Elast. 127(1), 79–101 (2017)

Santos, M.L., Junior, D.A.: On the porous-elastic system with Kelvin–Voigt damping. J. Math. Analy. Appl. 445(1), 498–512 (2017)

Soufyane, A.: Energy decay for porous-thermo-elasticity systems of memory type. Appl. Anal. 87(4), 451–464 (2008)

Soufyane, A., Afilal, M., Aouam, T., Chacha, M.: General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type. Nonlinear Anal. 72(11), 3903–3910 (2010)

Hachelfi, M., Djebabla, A., Tatar, N.: On the decay of the energy for linear thermoelastic systems by thermal and micro-temperature effects. Eurasian J. Math. Comput. Appl. 6(2018), 29–37 (2018)

Apalara, T.A.: On the stability of porous-elastic system with microtemparatures. J. Therm. Stresses 42(2), 265–278 (2019)

Liu, Z., Zheng, S.: Semigroups associated with dissipative systems. In: Pitman Research Notes in Mathematics, vol. 398. Chapman and Hall, Boca Raton (1999)

Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)