On the stability of a finite-difference scheme for nonlocal parabolic boundary-value problems

Mifodijus Sapagovas1
1Institute of Mathematics and Informatics, Vilnius, Lithuania

Tóm tắt

Từ khóa


Tài liệu tham khảo

K.E. Atkinson, Introduction to Numerical Analysis, John Wiley & Sons, New York, 1978.

B.I. Bandyrskii, I. Lazurchak, V.L. Makarov, and M. Sapagovas, Eigenvalue problem for the second order differential equation with nonlocal conditions, Nonlin. Anal. Model. Control, 11(1):13–32, 2006.

N. Borovykh, Stability in the numerical solution of the heat equation with nonlocal boundary conditions, Appl. Numer. Math., 42:17–27, 2002.

B. Cahlon, D.M. Kulkarni, and P. Shi, Stepwise stability for the heat equation with a nonlocal constrain, SIAM J. Numer. Anal., 32(2):571–593, 1995.

R. Čiegis, A. Štikonas, O. Štikonienė, and O. Suboč, A monotonic finite-diference scheme for a parabolic problem with nonlocal conditions, Differ. Equ., 38(7):1027–1037, 2002.

R. Čiupaila, Ž. Jesevičiūtė, and M. Sapagovas, On the eigenvalue problem for one-dimensional differential operator with nonlocal integral condition, Nonlinear Anal. Model. Control, 9(2):109–116, 2004.

G. Ekolin, Finite difference methods for a nonlocal boundary value problem for heat equation, BIT, 31:245–261, 1991.

G. Fairweather and J.C. Lopez-Marcos, Galerkin methods for a semilinear parabolic problem with nonlocal conditions, Adv. Comput. Math., 6:243–262, 1996.

S.K. Godunov and V.S. Ryabenjkii, Difference Schemes Introduction to the Theory, Moscow, Nauka, 1977 (in Russian).

A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Stability of a nonlocal two-dimensional finite-difference problem, Differ. Equ., 37(7):970–978, 2001.

A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Stability criterion of difference schemes for the heat conduction equation with nonlocal boundary conditions, Comput. Methods Appl. Math., 6(1):31–55, 2006.

A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Study of the norm in stability problems for nonlocal difference schemes, Differ. Equ., 42(7):974–984, 2006.

A.V. Gulin and V.A. Morozova, On the stability of nonlocal finite-difference boundary value problem, Differ. Equ., 39(7):962–967, 2003.

Y. Liu, Numerical solution of the heat equation with nonlocal boundary conditions, J. Comput. Appl. Math., 110(1):115–127, 1999.

S. Pečiulytė, O. Štikonienė, and A. Štikonas, Sturm-Liouville problem for stationary differential operator with nonlocal integral boundary conditions, Nonlin. Anal. Model. Control, 11(1):47–78, 2006.

R.D. Richtmyer and K.W. Marton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons, 1967.

A.A. Samarskii, The Theory of Difference Schemes, Moscow, Nauka, 1977 (in Russian); Marcel Dekker, Inc., New York and Basel, 2001.

A.A. Samarskii and A.V. Gulin, Numerical Methods, Moscow, Nauka, 1989 (in Russian).

M.P. Sapagovas, The eigenvalue of some problems with a nonlocal condition, Differ. Equ., 38(7):1020–1026, 2002.

M.P. Sapagovas, On stability of finite-difference schemes for one-dimensional parabolic equations subject to integral condition, Zh. Obchysl. Prykl. Mat., 92:70–90, 2005.

M.P. Sapagovas and A.D. Štikonas, On the structure of the spectrum of a differential operator with a nonlocal condition, Differ. Equ., 41(7):1010–1018, 2005.

A. Štikonas, The Sturm-Liouville problem with a nonlocal boundary condition, Lith. Math. J., 47(3):336–351, 2007.