On the stability and extension of reduced-order Galerkin models in incompressible flows

Imran Akhtar1,2, Ali H. Nayfeh1, Calvin J. Ribbens3
1Department of Engineering Science and Mechanics, MC 0219, Virginia Tech, Blacksburg, USA
2Interdisciplinary Center for Applied Mathematics, MC 0531, Virginia Tech, Blacksburg, USA
3Department of Computer Science Virginia Tech, Blacksburg, USA

Tóm tắt

Proper orthogonal decomposition (POD) has been used to develop a reduced-order model of the hydrodynamic forces acting on a circular cylinder. Direct numerical simulations of the incompressible Navier–Stokes equations have been performed using a parallel computational fluid dynamics (CFD) code to simulate the flow past a circular cylinder. Snapshots of the velocity and pressure fields are used to calculate the divergence-free velocity and pressure modes, respectively. We use the dominant of these velocity POD modes (a small number of eigenfunctions or modes) in a Galerkin procedure to project the Navier–Stokes equations onto a low-dimensional space, thereby reducing the distributed-parameter problem into a finite-dimensional nonlinear dynamical system in time. The solution of the reduced dynamical system is a limit cycle corresponding to vortex shedding. We investigate the stability of the limit cycle by using long-time integration and propose to use a shooting technique to home on the system limit cycle. We obtain the pressure-Poisson equation by taking the divergence of the Navier–Stokes equation and then projecting it onto the pressure POD modes. The pressure is then decomposed into lift and drag components and compared with the CFD results.

Từ khóa


Tài liệu tham khảo

Akhtar, I.: Parallel simulations, reduced-order modeling, and feedback control of vortex shedding using fluidic actuators. Ph.D. Thesis, Virginia Tech, Blacksburg, VA (2008)

Akhtar, I., Nayfeh, A.H., Ribbens, C.J.: On controlling the bluff body wake using a reduced-order model. In: Proceedings of the 4th Flow Control Conference, Seattle, WA. AIAA Paper No. 2008-4189 (2008)

Arafat H.N., Nayfeh A.H.: Combination internal resonance in heated annular plates. Nonlinear Dyn. 37(4), 285–306 (2004)

Aubry N., Lian W.Y., Titi E.S.: Preserving symmetries in the proper orthogonal decomposition. SIAM J. Sci. Comput. 14(2), 483–505 (1993)

Bakewell H.P., Lumley J.L.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10(9), 1880–1889 (1967)

Berkooz G., Holmes P., Lumley J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 53, 321–575 (1993)

Bishop R.E.D., Hassan A.Y.: The lift and drag forces on a circular cylinder in flowing fluid. Proc. Royal Soc. Ser. A 277, 32–50 (1963)

Chorin A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

Chorin A.J.: Numerical solution of incompressible flow problems. Math. Comput. 22, 745–762 (1968)

Chorin A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 135(2), 118–125 (1997)

Cohen, K., Seigal, S., Luchtenburg, M., McLaughlin, T., Seifert, A.: Sensor placement for closed-loop flow control of a “D” shaped cylinder wake. In: Processdings of 2nd AIAA Flow Control Conference. AIAA Paper No. 2004–2523 (2004)

Deane A.E., Mavriplis C.: Low-dimensional description of the dynamics in separated flow past thick airfoils. AIAA J. 6, 1222–1234 (1994)

Deane A.E., Kevrekidis I.G., Karniadakis G.E., Orsag S.A.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinder. Phys. Fluids A 3(10), 2337–2354 (1991)

Emam S.A., Nayfeh A.H.: On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn. 35(1), 1–17 (2004)

Foias C., Jolly M.S., Kevrekidis I.G., Titi E.S.: Dissipativity of the numerical schemes. Nonlinearity 4, 591–613 (1991)

Graham W.R., Peraire J., Tang K.Y.: Optimal control of vortex shedding using low-order models. Part I: Open-loop model development. Int. J. Numer. Methods Eng. 44, 945–972 (1999)

Graham W.R., Peraire J., Tang K.Y.: Optimal control of vortex shedding using low-order models. Part II: Model-based control. Int. J. Numer. Methods Eng. 44, 973–990 (1999)

Hartlen R.T., Currie I.G.: Lift-oscillator model of vortex-induced vibration. ASCE J. Eng. Mech. 96, 577–591 (1970)

Hiskens I.A., Reddy P.B.: Switching-induced stable limit cycles. Nonlinear Dyn. 50(3), 575–583 (2007)

Holmes P., Lumley J.L., Berkooz G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

Iwan W.D., Blevins R.D.: A model for vortex-induced oscillation of structures. J. Appl. Mech. 41(3), 581–586 (1974)

Kim J., Moin P.: Application of a fractional-step method to incompressible Navier–Stokes. J. Comput. Phys. 59, 308–323 (1985)

Krenk S., Nielsen S.R.K.: Energy balanced double oscillator model for vortex-induced vibrations. ASCE J. Eng. Mech. 125(3), 263–271 (1999)

Landl R.: A mathematical model for vortex-excited vibration of cable suspensions. J. Sound Vib. 42(2), 219–234 (1975)

Ma X., Karniadakis G.: A low-dimensional model for simulating three-dimensional cylinder flow. J. Fluid Mech. 458, 181–190 (2002)

Mittal R., Balachandar S.: Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Phys. Fluids 7(8), 1841–1865 (1995)

Mittal R., Balachandar S.: Direct numerical simulation of flow past elliptic cylinders. J. Comput. Phys. 124, 351–367 (1996)

Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, pp. 449–454. Wiley, New York (1995)

Nayfeh A.H., Younis M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840–1847 (2005)

Noack B.R., Afanasiev K., Morzynski M., Thiele F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

Noack B.R., Papas P., Monkewitz P.A.: The need for a pressure-term representation in empirical galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339–365 (2005)

Orszag S.A., Kells L.C.: Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96(1), 159–205 (1985)

Prabhu R.D., Collis S.S., Chang Y.: The influence of control on pod of wall bounded turbulent flows. Phys. Fluids 13(2), 520–537 (2001)

Roshko, A: On the development of turbulent wakes from vortex streets. NACA Rep. 1191, (1954) (unpublished)

Singh S.N., Myatt J.H., Addington G.A., Banda S., Hall J.K.: Optimal feedback control of vortex shedding using proper orthogonal decomposition models. J. Fluids Eng. 123, 612–618 (2001)

Sirisup S., Karniadakis G.E.: A spectral viscosity method for correcting the long-term behavior of pod models. J. Comput. Phys. 194, 92–116 (2004)

Sirovich L.: Turbulence and the dynamics of coherent structures. Q. Appl. Math. 45, 561–590 (1987)

Sirovich L., Kirby M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987)

Skop R.A., Griffin O.M.: On a theory for the vortex-excited oscillations of flexible cylindrical structures. J. Sound Vib. 41(3), 263–274 (1975)

Steger J.L., Kutler P.: Implicit finite-difference procedures for the computation of vortex wakes. AIAA J. 15(4), 581–590 (1977)

Street C.L., Hussaini M.Y.: A numerical solution of the appearance of chaos in finite length Taylor-Couette flow. Appl. Numer. Math. 6, 123–139 (1991)

Tadmor E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30 (1989)

Weiselsberger, C.: NACA TN 84 (1922) (unpublished)

Williamson C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477–539 (1996)

Zamamiri A.M., Zhang Y., Hanson M.A., Hjorts M.A.: Dynamics analysis of an age distribution model of oscillating yeast cultures. Chem. Eng. Sci. 57, 2169–2181 (2002)

Zang Y., Street R.L., Koseff J.R.: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 18–33 (1994)