On the spectral mapping theorem for Weyl spectra of Toeplitz operators

Advances in Operator Theory - Tập 5 Số 4 - Trang 1618-1634 - 2020
Pietro Aiena1
1Dipartimento d’Ingegneria, Università di Palermo (Italia), Palermo, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aiena, P.: Fredholm and local spectral theory II, with application to Weyl-type theorems. Springer Lecture Notes of Mathematics, vol. 2235 (2018)

Aiena, P.: Algebraically paranormal operators on Banach spaces. Banach J. Math. Anal. 7(2), 136–145 (2013)

Aiena, P., Peña, P.: A variation on Weyl’s theorem. J. Math. Anal. Appl. 324, 566–79 (2006)

Aiena, P., Triolo, S.: Weyl type theorems on Banach spaces under compact perturbations. Mediterr. J. Math. 15(3), 1–18 (2018)

Aiena, P., Triolo, S.: Some remarks on the spectral properties of Toeplitz operators. Mediterr. J. Math. 16, 135 (2019)

Coburn, L.A.: Weyl’s theorem for nonnormal operators. Mich. Math. J. 13(3), 285–288 (1966)

Conway, J. B.: The theory of subnormal operators, Mathematical Survey and Monographs, vol. 36. American Mathematical Society, Providence. Springer, New York (1992)

Djordjević, D.S.: Operators obeying $$a$$-Weyl’s theorem. Pub. Math. Debrecen 55, 3–4(3), 283–98 (1999)

Douglas, R.G.: Banach algebra techniques in operator theory. Graduate Texts in Mathematics, vol. 179, 2nd edn. Springer, New York (1998)

Duggal, B.P.: Isolated eigenvalues, poles, compact perturbation of Banach space operators. Oper. Matrices Debrecen 13(4), 966–973 (2019)

Farenick, D.R., Lee, W.Y.: Hyponormality and spectra of Toeplitz operators. Trans. Am. Math. Soc 348(10), 4153–74 (1996)

Garcia, S.R., Putinar, M.: Complex symmetric operators and applications I. Trans. Am. Math. Soc. 358, 1285–315 (2006)

Garcia, S.R., Putinar, M.: Complex symmetric operators and applications II. Trans. Am. Math. Soc. 359, 3913–931 (2007)

Heuser, H.: Functional Analysis. Marcel Dekker, New York (1982)

Lay, D., Taylor, A.: Introduction to Functional Analysis. Wiley, New York (1980)

Waleed Noor, S.: Complex symmetry of Toeplitz operators with continuous symbol. Arch. Math. 109, 455–60 (2017)

Widom, H.: On the spectrum of Toeplitz operators. Pac. J. Math. 14, 365–75 (1964)