On the solutions and conservation laws of the model for tumor growth in the brain

Journal of Mathematical Analysis and Applications - Tập 350 - Trang 256-261 - 2009
A.H. Bokhari1, A.H. Kara2, F.D. Zaman1
1Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2School of Mathematics and Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa

Tài liệu tham khảo

Jones, 2003 Murray, 2003 Byrne, 1995, Mathematical models for tumor angiogenesis: Numerical simulations and nonlinear wave solutions, Bull. Math. Biol., 57, 461, 10.1007/BF02460635 Bellomo, 2004, Multiscale modeling and mathematical problems related to tumor evolution and medical therapy, J. Theor. Med., 5, 111, 10.1080/1027336042000288633 Hatzikiru, 2005, Math. Models Methods Appl. Sci. Burgess, 1997, J. Neuropath Exp. Neur., 56, 704, 10.1097/00005072-199706000-00008 Moyo, 2004, Symmetry methods applied to a mathematical model of a tumor of the brain, Proc. Inst. Math. Natl. Acad. Sci. Ukraine, 50, 204 T.L. Chenevert, P.E. McKeever, B.D. Ross, Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging, PMID: 9815831 [PubMed–indexed for MEDLINE] Olver, 1993 Kara, 2006, Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dynam., 45, 367, 10.1007/s11071-005-9013-9