On the solution of trivalent decision problems by quantum state identification
Tóm tắt
The trivalent functions of a trit can be grouped into equipartitions of three elements. We discuss the separation of the corresponding functional classes by quantum state identifications.
Tài liệu tham khảo
Beals R, Buhrman H, Cleve R, Mosca M, de Wolf R (2001) Quantum lower bounds by polynomials. J ACM 48:778–797. http://dx.doi.org/10.1145/502090.502097
Bennett CH, Bernstein E, Brassard G, Vazirani U (1997) Strengths and weaknesses of quantum computing. SIAM J Comput 26:1510–1523. http://dx.doi.org/10.1137/S0097539796300933
Brukner Č, Zeilinger A (1999a) Malus’ law and quantum information. Acta Physica Slovaca 49:647–652
Brukner Č, Zeilinger A (1999b) Operationally invariant information in quantum mechanics. Phys Rev Lett 83:3354–3357
Brukner Č, Zeilinger A (2003) Information and fundamental elements of the structure of quantum theory. In: Castell L, Ischebek O (eds) Time, quantum and information, Springer, Berlin, pp 323–355
Brukner Č, Zukowski M, Zeilinger A (2002) The essence of entanglement. Translated to Chinese by Qiang Zhang and Yond-de Zhang, New advances in physics (J Chin Phys Soc). http://xxx.lanl.gov/abs/quant-ph/0106119
Cleve R (2000) An introduction to quantum complexity theory. In: Macchiavello C, Palma G, Zeilinger A (eds) Collected papers on quantum computation and quantum information theory. World Scientific, Singapore, pp 103–127
Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Rapid solution of problems by quantum computation. Proc R Soc A Math Phys Eng Sci 454:339–354. http://dx.doi.org/10.1098/rspa.1998.0164
Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond Ser A Math Phys (1934–1990) 400:97–117. http://dx.doi.org/10.1098/rspa.1985.0070
Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc Math Phys Sci (1990–1995) 439:553–558. http://dx.doi.org/10.1098/rspa.1992.0167
Donath N, Svozil K (2002) Finding a state among a complete set of orthogonal ones. Phys Rev A (Atomic, Molecular, and Optical Physics) 65:044 302. http://dx.doi.org/10.1103/PhysRevA.65.044302
Farhi E, Goldstone J, Gutmann S, Sipser M (1998) Limit on the speed of quantum computation in determining parity. Phys Rev Lett 81:5442–5444. http://dx.doi.org/10.1103/PhysRevLett.81.5442
Fortnow L (2003) One complexity theorist’s view of quantum computing. Theor Comput Sci 292:597–610. http://dx.doi.org/10.1016/S0304-3975(01)00377-2
Gruska J (1999) Quantum computing. McGraw-Hill, London
Mermin ND (2003) From Cbits to Qbits: teaching computer scientists quantum mechanics. Am J Phys 71:23–30. http://dx.doi.org/10.1119/1.1522741
Mermin ND (2007) Quantum computer science. Cambridge University Press, Cambridge
Miao X (2001) A polynomial-time solution to the parity problem on an NMR quantum computer. eprint: arXiv: quant-ph/0108116
Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge
Odifreddi P (1989) Classical recursion theory, vol 1. North-Holland, Amsterdam
Orus R, Latorre JI, Martin-Delgado MA (2004) Systematic analysis of majorization in quantum algorithms. Eur Phys J D 29:119–132. http://dx.doi.org/10.1140/epjd/e2004-00009-3
Ozhigov Y (1998) Quantum computer can not speed up iterated applications of a black box. Lect Notes Comput Sci 1509:152–159. http://dx.doi.org/10.1007/3-540-49208-9
Rogers H Jr (1967) Theory of recursive functions and effective computability. McGraw-Hill, New York
Stadelhofer R, Suterand D, Banzhaf W (2005) Quantum and classical parallelism in parity algorithms for ensemble quantum computers. Phys Rev A (Atomic, Molecular, and Optical Physics) 71:032345. http://dx.doi.org/10.1103/PhysRevA.71.032345
Svozil K (2006) Characterization of quantum computable decision problems by state discrimination. In: Adenier G, Khrennikov A, Nieuwenhuizen TM (eds) Quantum theory: reconsideration of foundations–3, vol 810, pp 271–279. http://link.aip.org/link/?APC/810/271/1
Svozil K (2002) Quantum information in base n defined by state partitions. Phys Rev A (Atomic, Molecular, and Optical Physics) 66:044306. http://dx.doi.org/10.1103/PhysRevA.66.044306
Svozil K (2004) Quantum information via state partitions and the context translation principle. J Mod Opt 51:811–819. http://dx.doi.org/10.1080/09500340410001664179
Zeilinger A (1999) A foundational principle for quantum mechanics. Found Phys 29:631–643. http://dx.doi.org/10.1023/A:1018820410908