On the solution of trivalent decision problems by quantum state identification

Springer Science and Business Media LLC - Tập 8 - Trang 539-546 - 2009
Karl Svozil1, Josef Tkadlec2
1Institut für Theoretische Physik, Vienna University of Technology, Vienna, Austria
2Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, Praha, Czech Republic

Tóm tắt

The trivalent functions of a trit can be grouped into equipartitions of three elements. We discuss the separation of the corresponding functional classes by quantum state identifications.

Tài liệu tham khảo

Beals R, Buhrman H, Cleve R, Mosca M, de Wolf R (2001) Quantum lower bounds by polynomials. J ACM 48:778–797. http://dx.doi.org/10.1145/502090.502097 Bennett CH, Bernstein E, Brassard G, Vazirani U (1997) Strengths and weaknesses of quantum computing. SIAM J Comput 26:1510–1523. http://dx.doi.org/10.1137/S0097539796300933 Brukner Č, Zeilinger A (1999a) Malus’ law and quantum information. Acta Physica Slovaca 49:647–652 Brukner Č, Zeilinger A (1999b) Operationally invariant information in quantum mechanics. Phys Rev Lett 83:3354–3357 Brukner Č, Zeilinger A (2003) Information and fundamental elements of the structure of quantum theory. In: Castell L, Ischebek O (eds) Time, quantum and information, Springer, Berlin, pp 323–355 Brukner Č, Zukowski M, Zeilinger A (2002) The essence of entanglement. Translated to Chinese by Qiang Zhang and Yond-de Zhang, New advances in physics (J Chin Phys Soc). http://xxx.lanl.gov/abs/quant-ph/0106119 Cleve R (2000) An introduction to quantum complexity theory. In: Macchiavello C, Palma G, Zeilinger A (eds) Collected papers on quantum computation and quantum information theory. World Scientific, Singapore, pp 103–127 Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Rapid solution of problems by quantum computation. Proc R Soc A Math Phys Eng Sci 454:339–354. http://dx.doi.org/10.1098/rspa.1998.0164 Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond Ser A Math Phys (1934–1990) 400:97–117. http://dx.doi.org/10.1098/rspa.1985.0070 Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc Math Phys Sci (1990–1995) 439:553–558. http://dx.doi.org/10.1098/rspa.1992.0167 Donath N, Svozil K (2002) Finding a state among a complete set of orthogonal ones. Phys Rev A (Atomic, Molecular, and Optical Physics) 65:044 302. http://dx.doi.org/10.1103/PhysRevA.65.044302 Farhi E, Goldstone J, Gutmann S, Sipser M (1998) Limit on the speed of quantum computation in determining parity. Phys Rev Lett 81:5442–5444. http://dx.doi.org/10.1103/PhysRevLett.81.5442 Fortnow L (2003) One complexity theorist’s view of quantum computing. Theor Comput Sci 292:597–610. http://dx.doi.org/10.1016/S0304-3975(01)00377-2 Gruska J (1999) Quantum computing. McGraw-Hill, London Mermin ND (2003) From Cbits to Qbits: teaching computer scientists quantum mechanics. Am J Phys 71:23–30. http://dx.doi.org/10.1119/1.1522741 Mermin ND (2007) Quantum computer science. Cambridge University Press, Cambridge Miao X (2001) A polynomial-time solution to the parity problem on an NMR quantum computer. eprint: arXiv: quant-ph/0108116 Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge Odifreddi P (1989) Classical recursion theory, vol 1. North-Holland, Amsterdam Orus R, Latorre JI, Martin-Delgado MA (2004) Systematic analysis of majorization in quantum algorithms. Eur Phys J D 29:119–132. http://dx.doi.org/10.1140/epjd/e2004-00009-3 Ozhigov Y (1998) Quantum computer can not speed up iterated applications of a black box. Lect Notes Comput Sci 1509:152–159. http://dx.doi.org/10.1007/3-540-49208-9 Rogers H Jr (1967) Theory of recursive functions and effective computability. McGraw-Hill, New York Stadelhofer R, Suterand D, Banzhaf W (2005) Quantum and classical parallelism in parity algorithms for ensemble quantum computers. Phys Rev A (Atomic, Molecular, and Optical Physics) 71:032345. http://dx.doi.org/10.1103/PhysRevA.71.032345 Svozil K (2006) Characterization of quantum computable decision problems by state discrimination. In: Adenier G, Khrennikov A, Nieuwenhuizen TM (eds) Quantum theory: reconsideration of foundations–3, vol 810, pp 271–279. http://link.aip.org/link/?APC/810/271/1 Svozil K (2002) Quantum information in base n defined by state partitions. Phys Rev A (Atomic, Molecular, and Optical Physics) 66:044306. http://dx.doi.org/10.1103/PhysRevA.66.044306 Svozil K (2004) Quantum information via state partitions and the context translation principle. J Mod Opt 51:811–819. http://dx.doi.org/10.1080/09500340410001664179 Zeilinger A (1999) A foundational principle for quantum mechanics. Found Phys 29:631–643. http://dx.doi.org/10.1023/A:1018820410908