On the singular set of stationary harmonic maps

Fabrice Béthuel1
1Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan et CNRS, 61 Avenue du Président Wilson, 94235, Cachan Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

F. BETHUEL, Un résultat de régularité pour les solutions de l'équation des surfaces à courbure moyenne prescrite. C.R. Acad. Sci. Paris314 (1992) p. 1003–1007

S. CHANILLO, Sobolev inequalities involving divergence free maps, Comm. PDE16 (1991) p. 1969–1994

S. CHANILLO and Y.Y. LI, Continuity of solutions of uniformly elliptic equations inℝ 2, to appear in Manuscripta. Math.

P. CHONE, to appear

R. COIFMAN, P-L. LIONS, Y. MEYER, S. SEMMES, Compacité par compensation et espaces de Hardy. C.R. Acad. Sci. Paris311 (1989) p. 519–524, and Compensated compactness and Hardy Spaces, to appear

G. DELL ANTONIO and D. ZWANZIGER, Every gauge orbit passes inside the Gribov Horizon, to appear

C.L. EVANS, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal.116 (1991) p. 101–163

M. GIAQUINTA,Multiple Integrals in the Calculus of variations and Non linear Elliptic Systems, Princeton Univ. Press (1983)

F. HELEIN, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C.R. Acad. Sci. Paris312 (1991) p. 591–596

F. HELEIN, Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Mathematica,70 (1991) p. 203–218

T. IWANIEC and G. MARTIN, Quasiregular mappings in even dimension, to appear in Acta Mathematica

F. JOHN and L. NIRENBERG, On functions of bounded mean oscillation, Comm. pure and Applied Math.14 (1961) p. 415–426

Y. MEYER,Ondelettes, Hermann (1990)

F. PACARD, Weak solutions of −Δu=u α inH 1(Ω) for $$\alpha \in \left[ {\frac{{n + 2}}{{n - 2}},\frac{{n + 1}}{{n - 3}}} \right]$$ , to appear

P. PRICE, A monotonicity formula for Yang-Mills fields, Manuscripta. Math.43 (1983) p. 131–166

T. RIVIERE, Everywhere discontinuous maps into spheres, To appear

E. STEIN,Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970)

R. SCHOEN and K. UHLENBECK, A regularity theory for harmonic maps, J. Diff. Geom.17 (1982), p. 307–335

A. TORCHINSKY,Real variable Methods in Harmonic Analysis, Academic Press (1986)