Về tập hợp kỳ dị và tính duy nhất của các nghiệm yếu của phương trình Navier-Stokes

manuscripta mathematica - Tập 49 - Trang 27-59 - 1984
Hermann Sohr1, Wolf von Wahl2
1Fachbereich Mathematik-Informatik der Universität-Gesamthochschule Paderborn, Paderborn
2Lehrstuhl für Angewandte Mathematik, Universität Bayreuth, Bayreuth

Tóm tắt

Chúng tôi nghiên cứu các thuộc tính tính điều hòa của các nghiệm yếu của phương trình Navier-Stokes, mà nằm trong L∞((O,T),Ln(Ω)) hoặc trong LP((O,T),Ln(Ω)) cho một số p≧2. Chúng tôi cũng chứng minh rằng L∞((O,T), Ln(Ω)) là một lớp duy nhất cho các nghiệm yếu. Hơn nữa, chúng tôi đưa ra một sự tổng quát của kết quả tính duy nhất của Serrin.

Từ khóa


Tài liệu tham khảo

Fujita, H., and Kato, T.: On the Navier-Stokes initial value problem I. Arch. Rat. Mech. Anal. 16, 269–315 (1964) Fujiwara, D., and Morimoto, H.: An Lr-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 24, 685–700 (1977) Giga, Y.: Analyticity of the Semigroup Generated by the Stokes Operator in Lr Spaces. Math. Z. 178, 297–329(1981) Giga, Y.: Domains in Lr spaces of fractional powers of the Stokes operator, to appear in Archive Rat. Mech. Anal. Giga, Y.: Regularity criteria for weak solutions of the Navier-Stokes system. Preprint Giga, Y., and Miyakawa, T.: Solutions in Lr to the Navier-Stokes initial value problem, to appear in Archive Rat. Mech. Anal. Kiselev, A.A., and Ladyženskaja, O.A.: On the Existence and Uniqueness of Solutions of the Nonstationary Problems for Flows of Non-Compressible Fluids. Am. Math. Soc. Translations, Ser. 2, 24, 79–106(1963) Kaniel, S., and Shinbrot, M.: The Initial Value Problem for the Navier-Stokes Equations. Arch. Rat. Mech. Anal. 21, 279–285(1966) Kato, T.: Strong Lp-solutions of the Navier-Stokes equations in ℝm. Math. Z., to appear. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Paris: Dunod, Gauthier-Villars 1969 Masuda, K.: On the stability of incompressible viscous fluid motions past objects.J. Math. Soc. Japan 27, 294–327(1975) Sobolevskii, P.E.: Study of the Navier-Stokes Equations by the Methods of the Theory of Parabolic Equations in Banach Spaces. Soviet Math. Dokl. 5, 720–723(1964) Serrin, J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems (R. Langer ed.), 69–98, Madison: The University of Wisconsin press 1963 Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z. 184, 359–376(1983) Sohr, H.: Optimale lokale Existenzsätze für die Gleichungen von Navier-Stokes. Math. Ann. 267, 107–123 (1984) Solonnikov, V.A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8, 467–529(1977) Solonnikov, V.A.: Estimates of the solutions of a nonstationary linearized system of Navier-Stokes. Am. Math. Soc. Translations 75, 1–116 (1968) Témam, R.: Navier-Stokes Equations. Amsterdam-New York-Oxford: North Holland 1977 Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Amsterdam-New York-Oxford: North Holland 1978 Wahl, W. von: Über das Verhalten für t→O der Lösungen nichtlinearer parabolischer Gleichungen, insbesondere der Gleichungen von Navier-Stokes. Sonder-forschungsbereich 72 “Approximation und Optimierung”, Universität Bonn. Preprint no. 602 (1983) Wahl, W. von: Berichtigung zur Arbeit: “Über das Verhalten für t→O der Lösungen nichtlinearer parabolischer Gleichungen, insbesondere der Gleichungen von Navier-Stokes” (preprint no. 602). Sonderforschungs-bereich 72 “Approximation und Optimierung”, Universität Bonn. Preprint-Reihe (1983) Wahl, W. von: Regularity Questions for the Navier-Stokes Equations. Approximation Methods for Navier-Stokes Problems. Proceedings, Paderborn, Germany 1979. Lecture Notes in Mathematics 771 (1980) Wahl, W. von: Regularity of Weak Solutions of the Navier-Stokes Equations. To appear in the Proceedings of the 1983 AMS Summer Institute on Nonlinear Functional Analysis and Applications. Proceedings of Symposia in Pure Mathematics. Am. Math. Soc.: Providence, Rhode Island Wahl, W. von: Regularitätsfragen für die instationären Navier-Stokesschen Gleichungen in höheren Dimensionen. J. Math. Soc. Japan 32, 263–283 (1980) Weissler, F.B.: The Navier-Stokes Initial Value Problem in Lp, Arch. Rat. Mech. Anal. 74, 219–230 (1981) Yosida, K.: Functional Analysis. Grundlehren d. Math. Wiss. 123. Berlin-Heidelberg-New York: Springer 1965