On the sensitive areas for targeted observations in ENSO forecasting
Tài liệu tham khảo
Baker, 2000, Observation and background adjoint sensitivity in the adaptive observation-targeting problem, Q. J. R. Meteorol. Soc., 126, 1431, 10.1002/qj.49712656511
Bishop, 1999, Ensemble transformation and adaptive observations, J. Atmos. Sci., 56, 1748, 10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2
Bishop, 2001, Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects, Mon. Weather Rev., 129, 420, 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
Cane, 1983, Oceanographic events during El Niño, Science, 222, 1189, 10.1126/science.222.4629.1189
Duan, 2016, The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: results from an earth system model, Clim. Dynam., 46, 3599, 10.1007/s00382-015-2789-5
Duan, 2009, Conditional nonlinear optimal perturbation: applications to stability, sensitivity, and predictability, Sci. China Ser. D., 52, 883, 10.1007/s11430-009-0090-3
Duan, 2018, Application of particle filter assimilation in the target observation for El Niño-Southern oscillation, Chin. J. Atmos. Sci., 042, 677
Duan, 2009, Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events, J. Geophys. Res-Oceans, 114
Hamill, 2002, Using improved background-error covariances from an ensemble Kalman filter for adaptive observations, Mon. Weather Rev., 130, 1552, 10.1175/1520-0493(2002)130<1552:UIBECF>2.0.CO;2
Kramer, 2013, Optimal localized observations for advancing beyond the ENSO predictability barrier, Nonlinear Proc. Geoph., 20, 221, 10.5194/npg-20-221-2013
Kramer, 2012, Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model, J. Phys. Oceanogr., 42, 3, 10.1175/JPO-D-11-014.1
Mu, 2003, Conditional nonlinear optimal perturbation and its applications, Nonlinear Proc. Geoph., 10, 493, 10.5194/npg-10-493-2003
Mu, 2007, Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model, J. Geophys. Res., 112
Palmer, 1998, Singular vectors, metrics, and adaptive observations, J. Atmos. Sci., 55, 633, 10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2
Sakai, 2009, Remote response of the East Asian winter monsoon to tropical forcing related to El Niño-Southern Oscillation, J. Geophys. Res., 114
Schneider, 1999, A conceptual framework for predictability studies, J. Clim., 12, 3133, 10.1175/1520-0442(1999)012<3133:ACFFPS>2.0.CO;2
Toth, 1997, Ensemble forecasting at NCEP and the breeding method, Mon. Weather Rev., 125, 3297, 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
Van Leeuwen, 2009, Particle filtering in geophysical systems, Mon. Weather Rev., 137, 4089, 10.1175/2009MWR2835.1
Van Leeuwen, 2019, Particle filters for high-dimensional geoscience applications: a review, Q. J. R. Meteorol. Soc., 145, 2335, 10.1002/qj.3551
Vetra-Carvalho, 2018, State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A, 70, 1, 10.1080/16000870.2018.1445364
Zhang, 2014, Using CMIP5 model outputs to investigate the initial errors that cause the “spring predictability barrier” for El Niño events, Sci. China Earth Sci., 58, 685, 10.1007/s11430-014-4994-1