On the sensitive areas for targeted observations in ENSO forecasting

Atmospheric and Oceanic Science Letters - Tập 14 - Trang 100054 - 2021
Jingjing Zhang1, Shujuan Hu1, Wansuo Duan2,3
1College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
3University of Chinese Academy of Sciences, Beijing, China

Tài liệu tham khảo

Baker, 2000, Observation and background adjoint sensitivity in the adaptive observation-targeting problem, Q. J. R. Meteorol. Soc., 126, 1431, 10.1002/qj.49712656511 Bishop, 1999, Ensemble transformation and adaptive observations, J. Atmos. Sci., 56, 1748, 10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2 Bishop, 2001, Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects, Mon. Weather Rev., 129, 420, 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 Cane, 1983, Oceanographic events during El Niño, Science, 222, 1189, 10.1126/science.222.4629.1189 Duan, 2016, The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: results from an earth system model, Clim. Dynam., 46, 3599, 10.1007/s00382-015-2789-5 Duan, 2009, Conditional nonlinear optimal perturbation: applications to stability, sensitivity, and predictability, Sci. China Ser. D., 52, 883, 10.1007/s11430-009-0090-3 Duan, 2018, Application of particle filter assimilation in the target observation for El Niño-Southern oscillation, Chin. J. Atmos. Sci., 042, 677 Duan, 2009, Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events, J. Geophys. Res-Oceans, 114 Hamill, 2002, Using improved background-error covariances from an ensemble Kalman filter for adaptive observations, Mon. Weather Rev., 130, 1552, 10.1175/1520-0493(2002)130<1552:UIBECF>2.0.CO;2 Kramer, 2013, Optimal localized observations for advancing beyond the ENSO predictability barrier, Nonlinear Proc. Geoph., 20, 221, 10.5194/npg-20-221-2013 Kramer, 2012, Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model, J. Phys. Oceanogr., 42, 3, 10.1175/JPO-D-11-014.1 Mu, 2003, Conditional nonlinear optimal perturbation and its applications, Nonlinear Proc. Geoph., 10, 493, 10.5194/npg-10-493-2003 Mu, 2007, Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model, J. Geophys. Res., 112 Palmer, 1998, Singular vectors, metrics, and adaptive observations, J. Atmos. Sci., 55, 633, 10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2 Sakai, 2009, Remote response of the East Asian winter monsoon to tropical forcing related to El Niño-Southern Oscillation, J. Geophys. Res., 114 Schneider, 1999, A conceptual framework for predictability studies, J. Clim., 12, 3133, 10.1175/1520-0442(1999)012<3133:ACFFPS>2.0.CO;2 Toth, 1997, Ensemble forecasting at NCEP and the breeding method, Mon. Weather Rev., 125, 3297, 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2 Van Leeuwen, 2009, Particle filtering in geophysical systems, Mon. Weather Rev., 137, 4089, 10.1175/2009MWR2835.1 Van Leeuwen, 2019, Particle filters for high-dimensional geoscience applications: a review, Q. J. R. Meteorol. Soc., 145, 2335, 10.1002/qj.3551 Vetra-Carvalho, 2018, State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A, 70, 1, 10.1080/16000870.2018.1445364 Zhang, 2014, Using CMIP5 model outputs to investigate the initial errors that cause the “spring predictability barrier” for El Niño events, Sci. China Earth Sci., 58, 685, 10.1007/s11430-014-4994-1