On the role of convexity in isoperimetry, spectral gap and concentration

Emanuel Milman1
1School of Mathematics, Institute for Advanced Study, Princeton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Almgren, F.J. Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. (2) 87, 321–391 (1968)

Almgren, F.J. Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4(165) (1976)

Alon, N., Milman, V.D.: Concentration of measure phenomena in the discrete case and the Laplace operator of a graph. In: Israel Seminar on Geometrical Aspects of Functional Analysis (1983/84). Tel Aviv Univ., Tel Aviv (1984)

Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985)

Bakry, D., Ledoux, M.: Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123(2), 259–281 (1996)

Barthe, F.: Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse Math. (6) 10(3), 393–404 (2001)

Barthe, F., Kolesnikov, A.V.: Mass transport and variants of the logarithmic Sobolev inequality. J. Geom. Anal. 18(4), 921–979 (2008)

Barthe, F., Maurey, B.: Some remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré Probab. Stat. 36(4), 419–434 (2000)

Barthe, F., Roberto, C.: Sobolev inequalities for probability measures on the real line. Stud. Math. 159(3), 481–497 (2003)

Barthe, F., Cattiaux, P., Roberto, C.: Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iberoam. 22(3), 993–1067 (2006)

Bavard, C., Pansu, P.: Sur le volume minimal de R 2. Ann. Sci. École Norm. Sup. 19(4), 479–490 (1986)

Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications. Ph.D. thesis, Institut Joseph Fourier, Grenoble (2004)

Bayle, V., Rosales, C.: Some isoperimetric comparison theorems for convex bodies in Riemannian manifolds. Indiana Univ. Math. J. 54(5), 1371–1394 (2005)

Benjamini, I., Cao, J.: A new isoperimetric comparison theorem for surfaces of variable curvature. Duke Math. J. 85(2), 359–396 (1996)

Bishop, R.L.: Infinitesimal convexity implies local convexity. Indiana Univ. Math. J. 24, 169–172 (1974/75)

Bobkov, S.: Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24(1), 35–48 (1996)

Bobkov, S.: On isoperimetric constants for log-concave probability distributions. In: Geometric Aspects of Functional Analysis, Israel Seminar 2004–2005. Lecture Notes in Math., vol. 1910, pp. 81–88. Springer, Berlin (2007)

Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27(4), 1903–1921 (1999)

Bobkov, S.G., Houdré, C.: Isoperimetric constants for product probability measures. Ann. Probab. 25(1), 184–205 (1997)

Bobkov, S.G., Houdré, C.: Some connections between isoperimetric and Sobolev-type inequalities. Mem. Am. Math. Soc. 129(616) (1997)

Bollobás, B., Leader, I.: Edge-isoperimetric inequalities in the grid. Combinatorica 11(4), 299–314 (1991)

Bombieri, E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78(2), 99–130 (1982)

Borell, C.: Convex measures on locally convex spaces. Ark. Mat. 12, 239–252 (1974)

Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285. Springer, Berlin (1988)

Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982)

Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton Univ. Press, Princeton (1970)

Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac. Sci. Toulouse Math. (6) 15(4), 613–635 (2006)

Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge Univ. Press, Cambridge (1989)

Federer, H.: Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften, Band 153. Springer, New York (1969)

Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. (2) 72, 458–520 (1960)

Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton Univ. Press, Princeton (1995)

Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés riemanniennes. Astérisque 163–164, 31–91 (1988). On the geometry of differentiable manifolds (Rome, 1986)

Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol 80. Birkhäuser, Basel (1984)

Gonzalez, E., Massari, U., Tamanini, I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32(1), 25–37 (1983)

Grigor’yan, A.: Isoperimetric inequalities and capacities on Riemannian manifolds. In: The Maz’ya Anniversary Collection, vol. 1, Rostock, 1998. Oper. Theory Adv. Appl., vol 109, pp. 139–153. Birkhäuser, Basel (1999)

Gromov, M.: Paul Lévy isoperimetric inequality. Preprint, I.H.E.S. (1980)

Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999)

Gromov, M., Milman, V.D.: A topological application of the isoperimetric inequality. Am. J. Math. 105(4), 843–854 (1983)

Gromov, M., Milman, V.D.: Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compos. Math. 62(3), 263–282 (1987)

Grüter, M.: Boundary regularity for solutions of a partitioning problem. Arch. Ration. Mech. Anal. 97(3), 261–270 (1987)

Hadwiger, H.: Gitterperiodische Punktmengen und Isoperimetrie. Monatsh. Math. 76, 410–418 (1972)

Hsu, E.P.: Multiplicative functional for the heat equation on manifolds with boundary. Mich. Math. J. 50(2), 351–367 (2002)

Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13(1), 234–253 (1985)

Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 5. Cambridge Univ. Press, Cambridge (1985)

Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13(3–4), 541–559 (1995)

Klartag, B.: A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Relat. Fields (to appear). arXiv:0705.0832 (2007)

Klartag, B.: A central limit theorem for convex sets. Invent. Math. 168, 91–131 (2007)

Klartag, B.: Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245, 284–310 (2007)

Kuwert, E.: Note on the isoperimetric profile of a convex body. In: Geometric Analysis and Nonlinear Partial Differential Equations, pp. 195–200. Springer, Berlin (2003)

Latała, R., Wojtaszczyk, J.O.: On the infimum convolution inequality. Stud. Math. 189(2), 147–187 (2008)

Ledoux, M.: A simple analytic proof of an inequality by P. Buser. Proc. Am. Math. Soc. 121(3), 951–959 (1994)

Ledoux, M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. (6) 9(2), 305–366 (2000)

Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. Am. Math. Soc., Providence (2001)

Ledoux, M.: Spectral gap, logarithmic Sobolev constant, and geometric bounds. In: Surveys in Differential Geometry, vol. IX, pp. 219–240. Int. Press, Somerville (2004)

Lee, M.: Isoperimetric regions in spaces. Bachelor’s degree thesis, Williams College, Williamstown, MA (2006)

Li, P., Yau, S.T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979. Proc. Sympos. Pure Math., XXXVI, pp. 205–239. Am. Math. Soc., Providence (1980)

Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

Maz’ja, V.G.: Classes of domains and imbedding theorems for function spaces. Dokl. Acad. Nauk SSSR 3, 527–530 (1960). Engl. transl. Sov. Math. Dokl. 1, 882–885 (1961)

Maz’ja, V.G.: p-conductivity and theorems on imbedding certain functional spaces into a C-space. Dokl. Akad. Nauk SSSR 140, 299–302 (1961). Engl. transl. Sov. Math. Dokl. 2, 1200–1203 (1961)

Maz’ja, V.G.: The negative spectrum of the higher-dimensional Schrödinger operator. Dokl. Akad. Nauk SSSR 144, 721–722 (1962). Engl. transl. Sov. Math. Dokl. 3, 808–810 (1962)

Maz’ja, V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985)

Milman, E.: On the role of convexity in functional and isoperimetric inequalities. Proc. Lond. Math. Soc. (2008). doi: 10.1112./plms/pdn045 . arxiv.org/abs/0804.0453

Milman, E.: Uniform tail-decay of Lipschitz functions implies Cheeger’s isoperimetric inequality under convexity assumptions. C. R. Math. Acad. Sci. Paris 346, 989–994 (2008)

Milman, E., Sodin, S.: An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies. J. Funct. Anal. 254(5), 1235–1268 (2008). arxiv.org/abs/math/0703857

Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Math., vol. 1200. Springer, Berlin (1986). With an appendix by M. Gromov

Morgan, F.: Geometric Measure Theory (a Beginner’s Guide), 3rd edn. Academic, San Diego (2000)

Morgan, F.: Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc. 355(12), 5041–5052 (2003) (electronic)

Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52(8), 853–858 (2005)

Morgan, F.: The Levy-Gromov isoperimetric inequality in convex manifolds with boundary. Manuscript, arXiv:0710.1975 (2007)

Morgan, F.: Geometric Measure Theory (a Beginner’s Guide), 4th edn. (to appear)

Morgan, F., Johnson, D.L.: Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49(3), 1017–1041 (2000)

Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972)

Paley, R.E.A.C., Zygmund, A.: A note on analytic functions in the unit circle. Proc. Camb. Philos. Soc. 28, 266–272 (1932)

Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

Qian, Z.: A gradient estimate on a manifold with convex boundary. Proc. R. Soc. Edinb. Sect. A 127(1), 171–179 (1997)

Ros, A.: The isoperimetric problem. In: Global Theory of Minimal Surfaces. Clay Math. Proc., vol. 2, pp. 175–209. Am. Math. Soc., Providence (2005)

Schechtman, G., Zinn, J.: Concentration on the l p n ball. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1745, pp. 245–256. Springer, Berlin (2000)

Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge Univ. Press, Cambridge (1993)

Sodin, S.: An isoperimetric inequality on the ℓ p balls. Ann. Inst. H. Poincaré Probab. Stat. 44(2), 362–373 (2008)

Sternberg, P., Zumbrun, K.: On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint. Commun. Anal. Geom. 7(1), 199–220 (1999)

Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

Wang, F.-Y.: Gradient estimates and the first Neumann eigenvalue on manifolds with boundary. Stoch. Process. Appl. 115(9), 1475–1486 (2005)