On the riesz charge of the lower envelope of δ-subharmonic functions
Tóm tắt
By potential theoretic methods involving the Cartan fine topology a recent result by two of the authors is extended as follows: The Riesz charge of the lower envelope of a family of 3 or more δ-subharmonic functions (no longer supposed continuous) in the plane equals the infimum of the charges of the lower envelopes of all pairs of functions from the family. As a key to this it is shown in two different ways that the (fine) harmonic measures of any 3 pairwise disjoint finely open planar sets have Borel supports with empty intersection. One proof of this uses the Jordan curve theorem and the fact that the set of inaccessible points of the fine boundary of a fine domain is Borel and has zero harmonic measure; the other involves Carleman-Tsuji type estimates together with a fine topology version of a recent result of P. Jones and T. Wolff on harmonic measure and Hausdorff dimension.
Tài liệu tham khảo
Bliedtner J., and Hansen W.:Potential Theory, Springer-Verlag, Berlin, 1986.
Bourbaki N.:Topologie générale, chap. 9, 2. éd., Hermann, Paris, 1958.
Bressler D. W. and Sion M.: The current theory of analytic sets,Canadian J. Math. 16 (1964), 207–230.
Choquet G.: Sur les points d'effilement d'un ensemble. Application à l'étude de la capacité,Ann. Institut Fourier (Grenoble) 9 (1959), 91–102.
Doob J. L.:Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, Berlin, 1984.
Eremenko, A., Fuglede, B., and Sodin, M.: Harmonic measure for three disjoint domains inR n,Collection of Unsolved Problems of Linear and Complex Analysis, 3. ed. (to appear), Springer-Verlag.
Eremenko, A., and Sodin, M.: Value-distribution of meromorphic functions and meromorphic curves from Potential Theory viewpoint (in Russian),Algebra & Analysis 3 (1991). (English translation will appear inLeningrad Math. J.).
Eremenko A., and Sodin M.: On value distribution of meromorphic functions of finite order (in Russian),Soviet Math. Doklady 316 (1991), 538–541.
Fuglede B.,Finely Harmonic Functions, Lecture Notes in Mathematics 289, Springer-Verlag, Berlin, 1972.
Fuglede B.: Sur la fonction de Green pour un domaine fin,Ann. Inst. Fourier (Grenoble) 24 (3–4) (1975), 201–206.
Fuglede B.: Harnack sets and openness of harmonic morphisms,Math. Ann. 241 (1979), 181–186.
Fuglede B.: Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains,Séminaire de Théorie du Potentiel, Paris, No. 5, pp. 97–116. Lecture Notes in Mathematics 814, Springer-Verlag, Berlin, 1980.
Grishin A. F.: Sets of regular growth of entire functions (in Russian),Teor. Funktsii, Funktsional. Anal. i Prilozhen. (Kharkov) 40 (1983), 36–47.
Heins M.: On a notion of convexity connected with a method of Carleman,J. d'Analyse Math. 7 (1959), 53–77.
Jones P., and Wolff T.: Hausdorff dimension of harmonic measure in the plane,Acta Math. 161 (1988), 131–144.
Mazurkiewicz S.: Über erreichbare Punkte,Fundamenta Math. 26 (1936), 150–155.
Tsuji M.:Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
Whyburn G. T.: A generalized notion of accessibility,Fundamenta Math. 14 (1929), 311–326.