On the representation theory of quantum Heisenberg group and algebra

Cechoslovackij fiziceskij zurnal - Tập 44 - Trang 1019-1027 - 1994
Demosthenes Ellinas1, Jan Sobczy2
1Departamento de Fśica Teórica and IFIC, Centro Mixto Universidad de Valencia, CSIC, Burjassot, Spain
2Institute of Theoretical Physics, Wroclaw University, Wroclaw, Poland

Tóm tắt

We show that the quantum Heisenberg groupH q (1) and its *-Hopf algebra structure can be obtained by means of contraction from quantumSU q (2) group. Its dual Hopf algebra is the quantum Heisenberg algebraU q (h(1)). We derive left and right regular representations forU q (h(1)) as acting on its dualH q (1). Imposing conditions on the right representation, the left representation is reduced to an irreducible holomorphic representation with an associated quantum coherent state. Realized in the Bargmann-Hilbert space of analytic functions the unitarity of regular representation is also shown. By duality, left and right regular representations for quantum Heisenberg group with the quantum Heisenberg algebra as representation module are also constructed. As before reduction of group left representations leads to finite dimensional irreducible ones for which the intertwinning operator is also investigated.

Tài liệu tham khảo

Ellinas D. and Sobczyk J.: FTUV/94-30, hep-th/9406114; to appear in J. Math. Phys. Masuda T., Mimachi K., Nakagami Y., Noumi M., Saburi Y., and Ueno K.: Lett. Math. Phys.19 (1990) 187; 195. Dąbrowski L., Dobrev V. K., and Floreanini R.: J. Math. Phys.25 (1994) 971. Dąbrowski L. and Sobczyk J.: Lett. Math. Phys. (in press). Dobrev V. K.: J. Phys. A27 (1994) 4841. Dąbrowski L. and Parashar P.: Left Regular Representations ofSl q (3): Reduction and Intertwinners. Preprint SISSA 57/94/FM. Dobrev V. K.: Rep. Math. Phys.25 (1988) 159. Faddeev L. D., Reshetikhin N. Yu., and Takhtajan L. A.: Leningrad Math. J.1 (1990) 193. Woronowicz S. L.: Publ. R. I. M. S.23 (1987) 117. Vaksman L. L. and Soibel'man Ya. S.: J. Fun. Anal. Appl.22 (1988) 170. Celeghini E., Giachetti R., Sorace E., and Tarlini M.: J. Math. Phys.31 (1990) 2548. Celeghini E., Giachetti R., Sorace E., and Tarlini M.: J. Math. Phys.32 (1991) 1155. Abe E.: Hopf Algebras (Cambridge Tracts in Math. No. 74). Cambridge Univ. Press, 1980. Chaichain M., Ellinas D., and Kulish P. P.: Phys. Rev. Lett.65 (1990) 95. Ellinas D.: J. Phys. A26 (1993) L51.