On the representation of finite convex geometries with convex sets

Springer Science and Business Media LLC - Tập 83 Số 1-2 - Trang 301-312 - 2017
János Kincses

Tóm tắt

Từ khóa


Tài liệu tham khảo

K. Adaricheva and J. B. Nation, Chapter 5: Convex geometries, Lattice Theory: Special Topics and Applications, volume 2, Eds.: G. Grätzer and F. Wehrung, Birkhäuser, 2015, 153–180.

K. Adaricheva and M. Bolat, Representation of convex geometries by circles on the plane, arXiv (2016), 1609.00092v1.

G. Czédli, Finite convex geometries of circles, Discrete Mathematics, 330 (2014), 61–75.

G. Czédli and J. Kincses, Representing convex geometries by almost-circles, arXiv (2016), 1608.06550.

M. G. Dobbins, A. Holmsen and A. Hubard, Regular systems of paths and families of convex sets in convex position, Trans. Amer. Math. Soc., 368 (2016), 3271–3303.

P. H. Edelman and R. E. Jamison, The theory of convex geometries, Geometriae Dedicata, 19 (1984), 247–270.

P. H. Edelman and M. E. Saks, Combinatorial representation and convex dimension of convex geometries, Order, 5 (1988), 23–32.

P. M. Gruber, Chapter 1.10: Aspects of approximation of convex bodies, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, 321–345.

K. Kashiwabara, M. Nakamura and Y. Okamoto, The affine representation theorem for abstract convex geometries, Comput. Geom., 30 (2005), 129–144.

B. Korte, L. Lovász, R. Schrader, Greedoids, Springer-Verlag, Berlin, 1991.

J. Pach and G. Tóth, Erdős–Szekeres-type theorems for segments and noncrossing convex sets, Geom. Dedicata, 81 (2000), 1–12.

M. Richter and L. G. Rogers, Embedding convex geometries and a bound on convex dimension, Discrete Mathematics, accepted subject to minor changes; arXiv: 1502.01941.

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 44, Cambridge University Press, Cambridge, 1993.

G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.