On the regular variation of ratios of jointly Fréchet random variables
Tóm tắt
Từ khóa
Tài liệu tham khảo
Balkema, G., Embrechts, P.: High risk scenarios and extremes. A geometric approach. Zurich Lectures in Advanced Mathematics: European Mathematical Society (EMS), Zürich (2007)
Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of extremes. Theory and Applications, with contributions from Daniel De Waal and Chris Ferro. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd. Chichester (2004)
Breiman, L.: On some limit theorems similar to the arc-sin law. Theory Probab. Appl. 10(2), 323–331 (1965)
de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12(4), 1194–1204 (1984)
de Haan, L., Ferreira, A.: Extreme Value Theory. Springer Series in Operations Research and Financial Engineering. Springer, New York, an introduction (2006)
de Haan, L., Pickands, III, J.: S tationary min-stable stochastic processes. Probab. Theory Relat. Fields 72(4), 477–492 (1986)
de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40(4), 317–337 (1977)
Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1(1), 126–166 (1991)
Gumbel, E.J.: Multivariate extremal distributions. Bull. Inst. Int. Stat. 39(livraison 2), 471–475 (1962)
Heffernan, J.E., Resnick, S.I.: Limit laws for random vectors with an extreme component. Ann. Appl. Probab. 17(2), 537–571 (2007)
Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)
Hult, H., Lindskog, F.: Extremal behavior of regularly varying stochastic processes. Stoch. Process. their Appl. 115(2), 249–274 (2005)
Hult, H., Lindskog, F., Mikosch, T., Samorodnitsky, G.: Functional large deviations for multivariate regularly varying random walks. Ann. Appl. Probab. 15(4), 2651–2680 (2005)
Kallenberg, O.: Random Measures, 4th edn. Akademie-Verlag, Berlin (1986)
Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248 (1973)
Ledford, A.W., Tawn, J.A.: Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187 (1996)
Ledford, A.W., Tawn, J.A.: Modelling dependence within joint tail regions. J. R. Stat. Soc., Ser. B 59(2), 475–499 (1997)
Ledford, A.W., Tawn, J.A.: Concomitant tail behaviour for extremes. Adv. Appl. Probab. 30(1), 197–215 (1998)
Maulik, K., Resnick, S.I., Rootzén, H.: Asymptotic independence and a network traffic model. J. Appl. Probab. 39(4), 671–699 (2002)
Resnick, S.I.: Extreme values, regular variation, and point processes. Vol. 4 of Applied Probability. A Series of the Applied Probability Trust. Springer-Verlag, New York (1987)
Resnick, S.I.: Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5(4), 303–336 (2002)
Resnick, S.I.: Heavy-tail phenomena, probabilistic and statistical modeling. Springer Series in Operations Research and Financial Engineering; Springer, New York (2007)
Resnick, S.I.: Multivariate regular variation on cones: application to extreme values, hidden regular variation and conditioned limit laws. Stochastics 80(2–3), 269–298 (2008)
Rvačeva, E.L.: On domains of attraction of multi-dimensional distributions. In: Select. Transl. Math. Statist. and Probability, vol. 2. American Mathematical Society, Providence, R.I., pp. 183–205 (1962)
Stoev, S.A., Taqqu, M.S.: Extremal stochastic integrals: a parallel between max-stable processes and α-stable processes. Extremes 8(4), 237–266 (2005)
Weintraub, K.S.: Sample and ergodic properties of some min-stable processes. Ann. Probab. 19(2), 706–723 (1991)