On the regular variation of ratios of jointly Fréchet random variables

Yizao Wang1
1Department of Statistics, The University of Michigan, Ann Arbor, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Balkema, G., Embrechts, P.: High risk scenarios and extremes. A geometric approach. Zurich Lectures in Advanced Mathematics: European Mathematical Society (EMS), Zürich (2007)

Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of extremes. Theory and Applications, with contributions from Daniel De Waal and Chris Ferro. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd. Chichester (2004)

Breiman, L.: On some limit theorems similar to the arc-sin law. Theory Probab. Appl. 10(2), 323–331 (1965)

de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12(4), 1194–1204 (1984)

de Haan, L., Ferreira, A.: Extreme Value Theory. Springer Series in Operations Research and Financial Engineering. Springer, New York, an introduction (2006)

de Haan, L., Pickands, III, J.: S tationary min-stable stochastic processes. Probab. Theory Relat. Fields 72(4), 477–492 (1986)

de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40(4), 317–337 (1977)

Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1(1), 126–166 (1991)

Gumbel, E.J.: Bivariate exponential distributions. J. Am. Stat. Assoc. 55, 698–707 (1960)

Gumbel, E.J.: Multivariate extremal distributions. Bull. Inst. Int. Stat. 39(livraison 2), 471–475 (1962)

Heffernan, J.E., Resnick, S.I.: Limit laws for random vectors with an extreme component. Ann. Appl. Probab. 17(2), 537–571 (2007)

Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)

Hult, H., Lindskog, F.: Extremal behavior of regularly varying stochastic processes. Stoch. Process. their Appl. 115(2), 249–274 (2005)

Hult, H., Lindskog, F., Mikosch, T., Samorodnitsky, G.: Functional large deviations for multivariate regularly varying random walks. Ann. Appl. Probab. 15(4), 2651–2680 (2005)

Kallenberg, O.: Random Measures, 4th edn. Akademie-Verlag, Berlin (1986)

Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248 (1973)

Ledford, A.W., Tawn, J.A.: Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187 (1996)

Ledford, A.W., Tawn, J.A.: Modelling dependence within joint tail regions. J. R. Stat. Soc., Ser. B 59(2), 475–499 (1997)

Ledford, A.W., Tawn, J.A.: Concomitant tail behaviour for extremes. Adv. Appl. Probab. 30(1), 197–215 (1998)

Maulik, K., Resnick, S.I., Rootzén, H.: Asymptotic independence and a network traffic model. J. Appl. Probab. 39(4), 671–699 (2002)

Resnick, S.I.: Extreme values, regular variation, and point processes. Vol. 4 of Applied Probability. A Series of the Applied Probability Trust. Springer-Verlag, New York (1987)

Resnick, S.I.: Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5(4), 303–336 (2002)

Resnick, S.I.: Heavy-tail phenomena, probabilistic and statistical modeling. Springer Series in Operations Research and Financial Engineering; Springer, New York (2007)

Resnick, S.I.: Multivariate regular variation on cones: application to extreme values, hidden regular variation and conditioned limit laws. Stochastics 80(2–3), 269–298 (2008)

Rvačeva, E.L.: On domains of attraction of multi-dimensional distributions. In: Select. Transl. Math. Statist. and Probability, vol. 2. American Mathematical Society, Providence, R.I., pp. 183–205 (1962)

Sibuya, M.: Bivariate extreme statistics. I. Ann. Inst. Stat. Math. Tokyo 11, 195–210 (1960)

Stoev, S.A., Taqqu, M.S.: Extremal stochastic integrals: a parallel between max-stable processes and α-stable processes. Extremes 8(4), 237–266 (2005)

Tawn, J.A.: Bivariate extreme value theory: models and estimation. Biometrika 75(3), 397–415 (1988)

Weintraub, K.S.: Sample and ergodic properties of some min-stable processes. Ann. Probab. 19(2), 706–723 (1991)

Zhang, Z.: Quotient correlation: a sample based alternative to Pearson’s correlation. Ann. Stat. 36(2), 1007–1030 (2008)