On the range diminishing property of numerical schemes for scalar conservation laws
Tài liệu tham khảo
Harten, 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357, 10.1016/0021-9991(83)90136-5
Laney, 1998
Harten, 1987, Uniformly high-order accurate nonoscillatory schemes I, SIAM J. Numer. Anal., 24, 279, 10.1137/0724022
LeFloch, 1999, Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions, Math. Comput. Amer. Math. Soc., 68, 1025, 10.1090/S0025-5718-99-01062-5
Yang, 1998, On wavewise entropy inequality for high resolution schemes II: Fully discrete MUSCL schemes with exact evolution in small time, SIAM J. Numer. Anal., 36, 1, 10.1137/S0036142995281498
LeVeque, 2002
Sweby, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995, 10.1137/0721062
Breuß, 2004, The correct use of the Lax-Friedrichs method, ESAIM Math. Model. Numer. Anal., 38, 519, 10.1051/m2an:2004027
Breuss, 2005, An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws, ESAIM Math. Model. Numer. Anal., 39, 965, 10.1051/m2an:2005042
Engquist, 1980, Stable and entropy satisfying approximations for transonic flow calculations, Math. Comp., 34, 45, 10.1090/S0025-5718-1980-0551290-1
Nessyahu, 1990, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408, 10.1016/0021-9991(90)90260-8
Tadmor, 1984, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp., 43, 369, 10.1090/S0025-5718-1984-0758189-X
Li, 2009, Local oscillations in finite difference solutions of hyperbolic conservation laws, Math. Comp., 78, 1997, 10.1090/S0025-5718-09-02219-4