On the $$q$$ q -Derivatives of a Certain Linear Positive Operators
Tóm tắt
Từ khóa
Tài liệu tham khảo
Derriennic MM (2006) Modified Bernstein polynomials and Jacobi polynomials in $$q-$$ q - calculus, Rend. Circ. Mat. Palermo, Serie II (Suppl. 76) 269–290 (2005). based on the $$q-$$ q - integers. Publ Math Debrecen 68:199–214
Durrmeyer JL (1967) Une formula d’inversion, de la transformee de Laplace: Application a la theorie des Moments, These de 3e Cycle, Faculte des Sciences de l’universite de Paris
Ernst T (1999) A new notation for $$q-$$ q - calculus and a new $$q-$$ q - Taylor formula, Uppsala University Report, Depart. Math., pp 1–28
Gandhi RB, Deepmala, Mishra VN (2016) Local and global results for modified Szász-Mirakjan operators. Math Method Appl Sci. doi: 10.1002/mma.4171
Gairola AR, Deepmala, Mishra LN (2016a) Rate of approximation by finite iterates of q-Durrmeyer operators. Proc Natl Acad Sci India Sect A Phys Sci (April–June 2016) 86(2):229–234. doi: 10.1007/s40010-016-0267-z
Gairola AR, Singh KK, Mishra VN (2016b) Rate of Approximation by $$q-$$ q - Durrmeyer Operators in $$L_p([0,1]),$$ L p ( [ 0 , 1 ] ) , $$1\leqslant p\leqslant \infty$$ 1 ⩽ p ⩽ ∞ . Ann Funct Anal (In press)
Gonska H, Raşa I (2009) Asymptotic behaviour of differentiated Bernstein polynomials. Mat Vesnik 61:53–60
Jackson FH (1910) On a $$q-$$ q - definite integrals. Q J Pure Appl Math 41:193–203
Koornwinder TH (1992) $$q-$$ q - Special functions, a tutorial. In: Gerstenhaber M, Stasheff J (eds) Deformation and qauntum groups with applications of mathematical Physics, contemporary mathematics, vol 134. American Mathematical Society, Providence
Mishra VN, Khatri K, Mishra LN (2012) On Simultaneous Approximation for Baskakov-Durrmeyer-Stancu type operators. J Ultra Sci Phys Sci 24(3):567–577
Mishra VN, Khatri K, Mishra LN (2013a) Some approximation properties of q-Baskakov-Beta-Stancu type operators. J Calc Var 2013:8 814824
Mishra VN, Khatri K, Mishra LN, Deepmala (2013b) Inverse result in simultaneous approximation by Baskakov–Durrmeyer–Stancu operators. J Inequal Appl 2013:586. doi: 10.1186/1029-242X-2013-586
Mishra VN, Khatri K, Mishra LN (2013c) Statistical approximation by Kantorovich type Discrete $$q-$$ q - Beta operators. Adv Differ Equ 2013:345. doi: 10.1186/10.1186/1687-1847-2013-345
Mishra VN, Sharma P, Mishra LN (2016a) On statistical approximation properties of $$q-$$ q - Baskakov–Szász–Stancu operators. J Egypt Math Soc 24(3):396–401. doi: 10.1016/j.joems.2015.07.005
Mishra VN, Gandhi RB, Nasaireh F (2016b) Simultaneous approximation by Szász–Mirakjan–Durrmeyer-type operators. Bollettino dell’Unione Matematica Italiana 8(4):297–305. doi: 10.1007/s40574-015-0045-x
Phillips GM (2003) Interpolation and approximation by polynomials, CMS books in mathematics, vol 14. Springer, Berlin
Singh KK, Gairola AR, Deepmala (2016) Approximation theorems for $$q-$$ q - analouge of a linear positive operator by A. Lupas. Int J Anal Appl 12(1):30–37
Uysal G, Yilmaz MM, Ibikli E (2015) A study on pointwise approximation by double singular integral operators. J Inequal Appl 2015:94
Uysal G, Yilmaz MM, Ibikli E (2016a) Approximation by radial type multidimensional singular integral operators. Palest J Math 5(2):61–70