On the progress of 3D-printed hydrogels for tissue engineering
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Gregor, E. Filova et al., Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J. Biol. Eng. 11(1), 31 (2017)
A.A.R. Lanza, R. Langer, J. Vacanti, Principles of Tissue Engineering (Academic Press, Cambridge, MA, 2011)
H.P.W.U. Meyer, T. Meyer, J. Handschel, Fundamentals of Tissue Engineering and Regenerative Medicine (Springer, Berlin, 2009)
Y.Z.X. Zhang, Tissue engineering applications of three-dimensional bioprinting. Cell Biochem. Biophys. 72, 777–782 (2015). https://doi.org/10.1007/s12013-015-0531-x
D.X.B. Chen, Scaffold Design, in Extrusion Bioprinting Scaffolds Tissue Engineering Application 2019. (Springer, Berlin, 2019), pp. 15–30
C.A.M.P.A. Janmey, Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9, 1–34 (2007). https://doi.org/10.1146/annurev.bioeng.9.060906.151927
J. Li, C. Wu, P.K. Chu, 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater. Sci. Eng. R 140, 100543 (2020)
J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers. Addit. Manuf. (2018). https://doi.org/10.1016/j.addma.2017.12.002
A.C. De Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, R.C. Advincula, High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141–155 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.04.010
A.D. Valino, J.R.C. Dizon, A.H. Espera, Q. Chen, J. Messman, R.C. Advincula, Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. (2019). https://doi.org/10.1016/j.progpolymsci.2019.101162
L. D. Tijing, J. R. C. Dizon, I. Ibrahim, A. R. N. Nisay, H. K. Shon, and R. C. Advincula, “3D printing for membrane separation, desalination and water treatment,” Appl. Mater. Today, vol. 18, 2020, doi: https://doi.org/10.1016/j.apmt.2019.100486.
A.H. Espera, J.R.C. Dizon, Q. Chen, R.C. Advincula, 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf. (2019). https://doi.org/10.1007/s40964-019-00077-7
R.N.R.C. Advincula, J.R.C. Dizon, Q. Chen, I. Niu, J. Chung, L. Kilpatrick, Additive manufacturing for COVID-19: devices, materials, prospects, and challenges. MRS Commun. 10(3), 413–427 (2020)
D.C. Siacor, Q. Chen, J.Y. Zhao, L. Han, A.D. Valino, E.B. Taboada, E.B. Caldona, On the Additive Manufacturing (3D Printing) of viscoelastic materials and flow behavior: From composites to food manufacturing. Addit. Manuf. 45, 102043 (2021). https://doi.org/10.1016/j.addma.2021.102043
H.S. Agueda, Q. Chen, R.D. Maalihan, J. Ren, Í.G. da Silva, N.P. Dugos, E.B. Caldona, 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun. (2021). https://doi.org/10.1557/s43579-021-00038-8
C.K. Chua, K.F. Leong, 3D Printing and Additive Manufacturing: Principles and Applications, 5th edn. (World Scientific, Singapore, 2017)
J.J. Ballyns, J.P. Gleghorn, V. Niebrzydowski, J.J. Rawlinson, H.G. Potter, S.A. Maher, T.M. Wright, Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. A 14(7), 1195–1202 (2008)
H.N. Chia, B.B. Wu, Recent advances in 3D printing of biomaterials. J Biol Eng 9(1), 4 (2015). https://doi.org/10.1186/S13036-015-0001-4
H.H. Seyednejad, D. Gawlitta, R.V. Kuiper, A. DeBruin, C.F. van Nostrum, T. Vermonden, W.J.A. Dhert, In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsiloncaprolactone). Biomaterials 33(17), 4309–4318 (2012). https://doi.org/10.1016/j.biomaterials.2012.03.002
G.H. Wu, S.H. Hsu, Review: polymeric-Based 3D printing for tissue engineering. J Med. Bioeng. 35(3), 285–292 (2015). https://doi.org/10.1007/s40846-015-0038-3
S. Utech, A.R. Boccaccini, A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51(1), 271–310 (2016). https://doi.org/10.1007/s10853-015-9382-5
A.K. Gaharwar et al., Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111(3), 441–453 (2014). https://doi.org/10.1002/bit.25160
G.R. Singhal, A review: tailor-made hydrogel structures (classifications and synthesis parameters). Polym. Plast. Technol. Eng. 55, 54–70 (2016). https://doi.org/10.1080/03602559.2015.1050520
J.-H. Lee, H.-W. Kim, Emerging properties of hydrogels in tissue engineering. J. Tissue Eng. (2018). https://doi.org/10.1177/2041731418768285
C.D. Spicer, Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym. Chem. 11, 184–219 (2020)
E.M. Ahmed, Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015). https://doi.org/10.1016/j.jare.2013.07.006
D.X.B. Chen, Biomaterials for bioprinting, in Extrusion bioprinting scaffolds tissue engineering application. (Springer, Dordrecht, 2019), pp. 33–48
A.S.-N.A. Vedadghavami, F. Minooei, M.H. Mohammadi, S. Khetani, A.R. Kolahchi, S. Mashayekhan, Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 62, 42–63 (2017). https://doi.org/10.1016/j.actbio.2017.07.028
R.E.M.J. Zhu, Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8(5), 607–626 (2011). https://doi.org/10.1586/erd.11.27
G.G.W.J.H.Y. Chung, S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S.E. Moulton, Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 1, 763–773 (2013). https://doi.org/10.1039/c3bm00012e
X.C.F. You, B.F. Eames, Application of extrusion-based hydrogel bioprinting for cartilage tissue engineering. Int. J. Mol. Sci. 18, 8–14 (2017). https://doi.org/10.3390/ijms18071597
H. Tetsuka, S.R. Shin, Materials and technical innovations in 3D printing in biomedical applications. J. Mater. Chem. B 8(15), 2930 (2020)
A.A.S.V. Murphy, 3D bioprinting of tissues and organs. Nat. Biotechnol 32, 773–785 (2014). https://doi.org/10.1038/nbt.2958
M.M. Askari, M.A. Naniza, M. Kouhic, A. Saberid, A. Zolfagharian, M. Bodaghia, Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with a focus on advanced fabrication techniques”. Biomater. Sci. 9, 535–573 (2021). https://doi.org/10.1039/D0BM00973C
C.B. Highley, C.B. Rodell, Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater 27(34), 5075–5079 (2015). https://doi.org/10.1002/adma.201501234
P.C.S. Naahidi, M. Jafari, M. Logan, Y. Wang, Y. Yuan, H. Bae, B. Dixon, Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 35(5), 530–544 (2017). https://doi.org/10.1016/j.biotechadv.2017.05.006
T.S.M.M. Khansari, L.V. Sorokina, P. Mukherjee, F. Mukhtar, M.R. Shirdar, M. Shahidi, Classification of hydrogels based on their source: A review and application in stem cell regulation. JOM 69, 1340–1347 (2017). https://doi.org/10.1007/s11837-017-2412-9
M.H.Y.I.M. El-Sherbiny, Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013(3), 316–334 (2013). https://doi.org/10.5339/gcsp.2013.38
Q.L.H. Yan, X. Chen, M. Feng, Z. Shi, D. Zhang, Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater. Lett. 209, 492–496 (2017). https://doi.org/10.1016/j.matlet.2017.08.093
Z.J.J. He, R. Chen, Y. Lu, L. Zhan, Y. Liu, D. Li, Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel. Mater. Sci. Eng. C 59, 53–60 (2016). https://doi.org/10.1016/j.msec.2015.09.104
A.R. Brunelle, C.B. Horner, K. Low, G. Ico, Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater. 66, 166–176 (2018). https://doi.org/10.1016/j.actbio.2017.11.020
P.K. Nguyen, W. Gao, D. Patel, Z. Siddiqui, S. Weiner, E. Shimizu, B. Sarkar, Self-assembly of a dentinogenic peptide hydrogel. ACS Omega 3(6), 5980–5987 (2018). https://doi.org/10.1021/acsomega.8b00347
O.G.N.M. Ergul, S. Unal, I. Kartal, C. Kalkandelen, N. Ekren, O. Kilic, L. Chi-Chang, 3D printing of chitosan/poly(vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering. Polym. Test. 79, 106006 (2019). https://doi.org/10.1016/j.polymertesting.2019.106006
L. Anja, M. Michael, B. Sophie, P. Birgit, B. Hagen, S. Michaela, W. Claudia, S. Frank, Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions. Biofabrication 8(1), 015015 (2016)
J.S.T. Jang, H. Jung, H. Pan, W. Han, S. Chen, 3D printing of hydrogel composite systems: recent advances in technology for tissue engineering. Int. J. Bioprinting 4(1), 126 (2018)
J.W.W. Hu, Z. Wang, Y. Xiao, S. Zhang, Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 7, 843–855 (2019). https://doi.org/10.1039/C8BM01246F
D.S.L.C.T. Huynh, M.K. Nguyen, Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44(17), 6629–6636 (2011). https://doi.org/10.1021/ma201261m
F.A.P. Matricardi, C. Di Meo, T. Coviello, W.E. Hennink, Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 65(9), 1172–1187 (2013). https://doi.org/10.1016/j.addr.2013.04.002
S.S.S. Goenka, V. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173, 75–88 (2014). https://doi.org/10.1016/j.jconrel.2013.10.017
M.R.H.R. Eivazzadeh-Keihan, K.K. Chenab, R. Taheri-Ledari, J. Mosafer, S.M. Hashemi, A. Mokhtarzadeh, A. Maleki, Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater. Sci. Eng. C 107, 110267 (2020). https://doi.org/10.1016/j.msec.2019.110267
B.Z.J. Saroia, W. Yanen, Q. Wei, K. Zhang, T. Lu, A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio-des. Manuf. 1, 265–279 (2018). https://doi.org/10.1007/s42242-018-0029-7
D. Williams, Revisiting the definition of biocompatibility. Med. Dev. Technol. 14(8), 10 (2003)
S.H.T.D.W. Hutmacher, J.C. Goh, An introduction to biodegradable materials for tissue engineering applications. Ann. Acad. Med. Singap. 30(2), 183–191 (2001)
D.J.M.J.L. Drury, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003)
J. Rouwkema, N.C. Rivron, C.A. van Blitterswijk, Vascularization in tissue engineering. Trends Biotechnol. 26(8), 434–441 (2008). https://doi.org/10.1016/j.tibtech.2008.04.009
H.H.H.D. Druecke, S. Langer, E. Lamme, J. Pieper, M. Ugarkovic, H.U. Steinau, Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. Biomed. Mater. Res. A 68, 10–18 (2004)
C.K.C.S. Yang, K.F. Leong, Z. Du, The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7, 679–689 (2001)
X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu, Bioactive hydrogels for bone regeneration. Bioact. Mater. 3(4), 401–417 (2018). https://doi.org/10.1016/j.bioactmat.2018.05.006
Y. Kim, H. Ko, K. Kwon, Extracellular matrix revisited: roles in tissue engineering. Int Neurourol J 20, S23-29 (2016). https://doi.org/10.5213/inj.1632600.318
H.T.T.F. Akther, P. Little, Z. Li, N.T. Nguyen, Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv 10, 43682–43703 (2020). https://doi.org/10.1039/D0RA08566A
S.D.T.S. Mantha, S. Pillai, P. Khayambashi, A. Upadhyay, Y. Zhang, O. Tao, H.M. Pham, Smart hydrogels in tissue engineering and regenerative medicine. Materials 12(20), 3323 (2019). https://doi.org/10.3390/ma12203323
P.D.T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26), 6020–6041 (2012). https://doi.org/10.1016/j.biomaterials.2012.04.050
A.K.J. Leijten, J. Seo, K. Yue, G. Trujillo-de Santiago, A. Tamayol, G.U. Ruiz-Esparza, S.R. Shin, R. Sharifi, I. Noshadi, M.M. Alvarez, Y.S. Zhang, Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. R 119, 1–35 (2017). https://doi.org/10.1016/j.mser.2017.07.001
E. Jabbari, Challenges for natural hydrogels in tissue engineering. Gels 5(2), 30 (2019). https://doi.org/10.3390/gels5020030
R.P.H. Zhao, M. Liu, Y. Zhang, J. Yin, Nanocomposite hydrogels for tissue engineering applications. Nanoscale 12(28), 14976–14995 (2020). https://doi.org/10.1039/D0NR03785K
S.G.K.S. Stratton, N.B. Shelke, K. Hoshino, S. Rudraiah, Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 1, 93–108 (2016). https://doi.org/10.1016/j.bioactmat.2016.11.001
F.D.N. Annabi, J.W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B 16(4), 371–383 (2010). https://doi.org/10.1089/ten.ten.2009.0639
H.F.C. Wu, A. Liu, S. Chen, X. Zhang, L. Chen, Y. Zhu, Z. Xiao, J. Sun, H. Luo, Cell-laden electroconductive hydrogel simulating nerve matrix to deliver electrical cues and promote neurogenesis. ACS Appl Mater Interfaces 11, 22512–22163 (2019). https://doi.org/10.1021/acsami.9b05520
F.B.E.K. Roshanbinfar, L. Vogt, B. Greber, S. Diecke, A.R. Boccaccini, T. Scheibel, Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv. Funct. Mater. 28(42), 1803951 (2018). https://doi.org/10.1002/adfm.201803951
M.N.A. Navaei, N. Moore, R.T. Sullivan, D. Truong, R.Q. Migrino, Electrically conductive hydrogel-based micro-topographies for the development of organized cardiac tissues. RSC Adv. 7(6), 3302–3312 (2017). https://doi.org/10.1039/C6RA26279A
S.A.B.Z.J. Rogers, M.P. Zeevi, R. Koppes, Electroconductive hydrogels for tissue engineering: current status and future perspectives. Bioelectricity 2(3), 279–292 (2020). https://doi.org/10.1089/bioe.2020.0025
J.-K.Y.L. Dong, S.-J. Wang, X.-R. Zhao, Y.-F. Zhu, 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci. Rep. 7(1), 1 (2017)
C.L.M. Beldjilali-Labro, A. Garcia Garcia, F. Farhat, F. Bedoui, J.-F. Grosset, M. Dufresne, Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials (Basel) 11(7), 1116 (2018)
M.P.C.A.D. Nocera, R. Comín, N.A. Salvatierra, Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed. Microdevices 20(2), 1 (2018)
A.F.B.V. Martin, I.A. Ribeiro, M.M. Alves, L. Gonçalves, R.A. Claudio, L. Grenho, M.H. Fernandes, P. Gomes, C.F. Santos, Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater. Sci. Eng. C 101, 15–26 (2019)
A.H.R. Murphy, D.P. Walsh, C.A. Hamilton, S.-A. Cryan, M. in het Panhuis, Degradable 3D-printed hydrogels based on star-shaped copolypeptides. Biomacromol 19(7), 2691 (2018)
S.C.P. Wang, D. Berry, A. Moran, F. He, T. Tam, L. Chen, Controlled growth factor release in 3D-printed hydrogels. Adv. Heal. Mater. 9(15), 1900977 (2020)
X.C.Q. Liu, Q. Li, S. Xu, Q. Zheng, Preparation and properties of 3D printed alginate–chitosan polyion complex hydrogels for tissue engineering. Polymers (Basel) 10(6), 664 (2018)
J.K. Tessmar, A.M. Göpferich, Customized PEG-derived copolymers for tissue-engineering applications. Macromol. Biosci. 7(1), 23 (2007)
K. Christensen, C. von Halling Laier, A. Kiziltay, S. Wilson, 3D printed hydrogel multiassay platforms for robust generation of engineered contractile tissues. Biomacromol 21(2), 356 (2019)
J.E.S. Mohanty, M. Alm, M. Hemmingsen, A. Dolatshahi-Pirouz, J. Trifol, P. Thomsen, M. Dufva, A. Wolff, 3D printed silicone–hydrogel scaffold with enhanced physicochemical properties. Biomacromol 17(4), 131 (2016)
G. Janarthanan, H.S. Shin, I.-G. Kim, P. Ji, E.-J. Chung, C. Lee, Self-crosslinking hyaluronic acid–carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Biofabrication 12(4), 045026 (2020)
W.L.X. Zhai, Y. Ma, C. Hou, F. Gao, Y. Zhang, C. Ruan, H. Pan, W.W. Lu, 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater. Sci. Eng. 3(6), 1109 (2017)
M. Håkansson, I.C. Henriksson, C. de la Peña Vázquez, V. Kuzmenko, K. Markstedt, P. Enoksson, Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv. Mater. Technol. 1(7), 1600096 (2016)
M.K. Jaiswal, J.R. Xavier, J.K. Carrow, P. Desai, D. Alge, Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10(1), 246 (2016)
P. Ramiah, L.C. du Toit, Y.E. Choonara, V. Pillay, Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front. Mater. (2020). https://doi.org/10.3389/fmats.2020.00076
A.F.A. Lee, A. Hudson, D. Shiwarski, J. Tashman, T. Hinton, S. Yerneni, J. Bliley, P. Campbell, 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452), 482 (2019)
S.W.Z. Zhang, R. Liu, H. Zepeda, L. Zeng, J. Qiu, 3D printing super strong hydrogel for artificial meniscus. ACS Appl. Polym. Mater. 1(8), 2023 (2019)
J.Y.Y. Xu, Q. Meng, X. Jin, F. Liu, Biodegradable scaffolds for urethra tissue engineering based on 3D printing. ACS Appl. Bio Mater. 3(4), 2007 (2020)
A.D. Benjamin, R. Abbasi, M. Owens, R.J. Olsen, D.J. Walsh, T.B. LeFevre, Light-based 3D printing of hydrogels with high-resolution channels. Biomed. Phys. Eng. Express 5(2), 025035 (2019)
Q.G. Biao Zhang, S. Li, H. Hingorani, A. Serjouei, L. Larush, A.A. Pawar, W.H. Goh, A.H. Sakhaei, M. Hashimoto, K. Kowsari, S. Magdassi, Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J. Mater. Chem. B 6(20), 3246 (2018)
J.H.S. Shin, H. Kwak, Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly (ethylene glycol)-tetraacrylate bio-ink. ACS Appl. Mater. Interfaces 10(28), 23573 (2018)
C.-T. Hsieh, S. Hsu, Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting. ACS Appl. Mater. Interfaces 11(36), 32746 (2019)
J.S.T.S. Jang, H.D. Jung, H.M. Pan, W.T. Han, S. Chen, 3D printing of hydrogel composite systems: recent advances in technology for tissue engineering. Int. J. Bioprint. 4(1), 126 (2018). https://doi.org/10.18063/IJB.v4i1.126
V.Y.S. Patra, A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell Biochem. Biophys. 74(2), 93–98 (2016). https://doi.org/10.1007/s12013-016-0730-0
M.E.G.M. Gomez-Florit, A. Pardo, R.M.A. Domingues, A.L. Graca, P.S. Babo, R.L. Reis, Natural-based hydrogels for tissue engineering applications. Molecules 25, 5858 (2020). https://doi.org/10.3390/molecules25245858
W.J.N.A. Sather, H. Sai, I.R. Sasselli, K. Sato, R.R.K.C.V. Synatschke, R.T. Zambrotta, J.F. Edelbrock, S.I.S.J.O. Hardin, J.D. Berrigan, M.F. Durstock, P. Mirau, 3D printing of supramolecular polymer hydrogels with hierarchical structure. Small 17, 2005743 (2021). https://doi.org/10.1002/smll.202005743