On the problem of stability for higher-order derivative Lagrangian systems

Letters in Mathematical Physics - Tập 14 - Trang 311-319 - 1987
Enrico Pagani1, Giampietro Tecchiolli2, Sergio Zerbini2,3
1Dipartimento di Matematica, Università di Trento, Trento, Italy
2Dipartimento di Fisica, Università di Trento, Trento, Italy
3Grupo Collegato di Trento, Associato all' Istituto Nazionale Fisica Nucleare, Trento, Italy

Tóm tắt

The problem of stability for dynamical systems whose Lagrangian function depends on the derivatives of a higher order than one is studied. The difficulty of this analysis arises from the indefiniteness of the Hamiltonian, so that the well-known Lagrange-Dirichlet theorem cannot be used and the methods of the canonical perturbation theory (KAM theory) must be employed. We show, with an example, that the indefiniteness of the energy does not forbid the stability.

Tài liệu tham khảo

AdlerS. L., Rev. Mod. Phys. 54, 729 (1982). ArnoldV. I., Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, Heidelberg, New York, 1978. Boulware, D. G., In ahead of this time, in S. M. Christensen (ed.), B. S. De Witt: A Collection of Essays in Honour of his 60th Birthday, Bristol (1983). BoulwareD. G. and DeserS., Phys. Rev. Lett. 55, 2656 (1984). Ferraris, M., Francaviglia, M., and Magnano, G., Nonlinear gravitational Lagrangian, G.R.G., in print (1987). FrancavigliaM. and KrupkaD. Ann. Inst. H. Poincaré 37, 295 (1982). MoserJ., Comm. Pure Appl. Math. 11, 81 (1958). MusickyD., J. Phys. A 11, 1 (1978). NarnhoferH. and ThirringW., Phys. Lett. B 76, 428 (1978). NekhoroshevN. N., Russian Math. Surveys 32, 1 (1978). OstrogradskyM., Mem. Acad. St. Petersburg 6, 385 (1850). PaisA. and UhlenbeckG. E., Phys. Rev. 79, 145 (1950). Pagani, E., Tecchiolli, G., and Zerbini, S., Sulla stabita' dei sistemi lagrangiani di ordine superiore, Univ. Trento, unpublished report (1987). PoincaréH., Les Méthodes nouvelles de la mécanique céleste, Guthier-Villars, Paris, 1982; Dover, New York, 1957. SalvadoriL., Ann. Mat. Pura Appl. 69, 1 (1965). SiegelC. L. and MoserJ. K., Lectures on Celestial Mechanics, Springer-Verlag, Berlin, Heidelberg, New York (1971). StelleK. S., Phys. Rev. D16, 953 (1977). Tecchiolli, G., Aspetti classici e quantistici di sistemi descritti da lagrangiane di ordine superiore nelle derivate, Tesi di Laurea in Fisica, Univ. di Trento (1986). TkhaiV. N., P.M.M. U.S.S.R. 49, 273 (1985). WhittakerE. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Univ. Press, Cambridge (1959).