On the probabilities of moderate deviations for combinatorial sums

Alexander O. Frolov1
1St. Petersburg State University, St. Petersburg, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. Wald and J. Wolfowitz, “Statistical tests based on permutations of observations,” Ann. Math. Stat. 15, 358–372 (1944).

G. E. Noether, “On a theorem by Wald and Wolfowitz,” Ann. Math. Stat. 20, 455–458 (1949).

W. Hoeffding, “A combinatorial central limit theorem,” Ann. Math. Stat. 22, 558–566 (1951).

M. Motoo, “On Hoeffding’s combinatorial central limit theorem,” Ann. Inst. Stat. Math. 8, 145–154 (1957).

V. F. Kolchin and V. P. Chistyakov, “On a combinatorial limit theorem,” Teor. Veroyatn. Primen. 18, 767–777 (1973).

E. Bolthausen, “An estimate of the remainder in a combinatorial central limit theorem,” Z. Wahrscheinlichkeitstheorie Verw. Geb. 66, 379–386 (1984).

B. von Bahr, “Remainder term estimate in a combinatorial central limit theorem,” Z. Wahrscheinlichkeitstheorie Verw. Geb. 35, 131–139 (1976).

S. T. Ho and L. H. Y. Chen, “An Lp bounds for the remainder in a combinatorial central limit theorem,” Ann. Probab. 6, 231–249 (1978).

L. Goldstein, “Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing,” J. Appl. Probab. 42, 661–683 (2005).

K. Neammanee and J. Suntornchost, “A uniform bound on a combinatorial central limit theorem,” Stochastic Anal. Appl. 3, 559–578 (2005).

K. Neammanee and P. Rattanawong, “A constant on a uniform bound of a combinatorial central limit theorem,” J. Math. Res. 1, 91–103 (2009).

L. H. Y. Chen, L. Goldstein, and Q. M. Shao, Normal Approximation by Stein’s Method (Springer, Heidelberg, 2011).

L. H. Y. Chen and X. Fang, “On the error bound in a combinatorial central limit theorem,” arXiv: 1111.3159 (2012).

A. N. Frolov, “Esseen type bounds of the remainder in a combinatorial CLT,” J. Stat. Plan. Inference 149, 90–97 (2014).

A. N. Frolov, “Bounds of the remainder in a combinatorial central limit theorem,” arXiv: 1405.1670 (2014).

Yu. V. Linnik, “Limit theorems for sums of independent random variables, I,” Teor. Veroyatn. Primen. 6, 145–163 (1961); Yu. V. Linnik, “Limit theorems for sums of independent random variables, II,” Teor. Veroyatn. Primen. 6, 377–391 (1961); Yu. V. Linnik, “Limit theorems for sums of independent random variables, III,” Teor. Veroyatn. Primen. 6, 121–134 (1962).

I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Dependent Random Variables (Nauka, Moscow, 1965) [in Russian].

S.V. Nagaev, “Some limit theorems for large deviations,” Teor. Veroyatn. Primen. 10, 231–254 (1965).

H. Rubin and J. Sethuraman, “Probabilities of moderate deviations,” Sankhya, Ser. A 27, 325–346 (1965).

A. V. Nagaev, “Limit theorems for large deviations under violation of the Cramer condition,” Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 6, 17–22 (1969).

N. N. Amosova, “On limit theorems for moderate deviations,” Vestn. Leningr. Univ., No. 13, 5–14 (1972).

R. Michel, “Nonuniform central limit bounds with applications to probabilities of deviations,” Ann. Probab. 4(1), 102–106 (1976).

A. D. Slastnikov, “Limit theorems for probabilities of moderate deviations,” Teor. Veroyatn. Primen. 23, 340–357 (1978).

N. N. Amosova, “On probabilities of moderate deviations of sums of independent random variables” Teor. Veroyatn. Primen. 24, 858–865 (1979).

N. N. Amosova, “On narrow zones of integral normal convergence,” Zap. Nauchn. Semin. LOMI 97, 4–14 (1980).

L. V. Rozovskii, “On limit theorems for large deviations in narrow zones,” Teor. Veroyatn. Primen. 26, 847–857 (1981).

Z. Rychlik, “Nonuniform central limit bounds with applications to probabilities of deviations,” Teor. Veroyatn. Primen. 28, 646–652 (1983).

A.D. Slastnikov, “Narrow zones of normal convergence for sums of non-identically distributed random variables,” Teor. Veroyatn. Primen. 29, 551–554 (1984).

A. N. Frolov, “On one-sided strong laws for large increments of sums,” Stat. Probab. Lett. 37, 155–165 (1998).

V. V. Petrov, “On probabilities of moderate deviations,” Zap. Nauchn. Semin. POMI 260, 214–217 (1999).

A. N. Frolov, “On probabilities of moderate deviations for sums of independent random variables,” Zap. Nauchn. Semin. POMI 294, 200–215 (2002).

L. V. Rozovskii, “Sums of independent random variables with finite variations — moderate deviations and bounds in CLT,” Zap. Nauchn. Semin. POMI 311, 242–259 (2004).

A. N. Frolov, “On asymptotic behavior of probabilities of moderate deviations,” Tr. S.-Peterb. O-va 14, 197–211 (2008).

V. V. Petrov, Limit Theorems for Sums of Independent Random Variables (Nauka, Moscow, 1987). [in Russian].