On the powerof second-order accurate numerical methods for model problems of gas- and hydrodynamics

Mathematical Models and Computer Simulations - Tập 3 - Trang 92-112 - 2011
S. A. Karabasov1,2
1Institute of Nuclear Safety, Russian Academy of Sciences, Moscow, Russia
2Department of Engineering, University of Cambridge, Cambridge, UK

Tóm tắt

The paper provides an overview on the use of high-resolution methods based on the CABARET scheme. The results are provided for several test problems including gas dynamics, computational aeroacoustics, and geophysical fluid dynamics for a classical double-gyre quasi-geostrophic model of ocean dynamics.

Tài liệu tham khảo

B. L. Rozhdestvenskii, N. N. Yanenko, Systems of quasilinear equations (Nauka, Moscow, 1978). C. Hirsch, Numerical Computation of Internal and External Flows. The Fundamentals of Computational Fluid Dynamics (2nd Edition, John Wiley & Sons, 2007). A. I. Tolstykh, “On the Method of a Numerical Solution of Navier-stokes Equations of a Compressed Gas in a Wide Range of Reynolds Numbers,” Dokl. Akad. Nauk, USSR 210(1), 48–51 (1973). S. K. Lele, “Compact Finite-difference Scheme with Spectral-like Resolution”, J. Comput. Physics 103, 16–42 (1992). C. K. W. Tam and J. C. Webb, “Dispersion-relation-preserving Finite Difference Schemes for Computational Acoustics,” J. Comput. Physics 107, 262–281 (1993). A. N. Tikhonov, A. A. Samarskii, “On a Convergence of Difference Schemes in a Classof Discontinuous Factors,” Dokl. Akad. Nauk, USSR 99(1), 27–30 (1954). A. A. Samarskii, Yu. P. Popov, Difference Schemes of Gas Dynamics (Nauka, Moscow, 1975). V. P. Kolgan, “Application of a Principle of the Minimal Values of a Derivative to Construction of Finite-Difference Schemes for the Calculation of Discontinuous Solutions of Gas Dynamics,” Uchen. Zap. CAGI 3(6), 68–77 (1972). J. P. Boris, D. L. Book, and K. Hain, “Flux-Corrected Transport: Generalization of the Method,” J. Comput. Phys., 31, 335–350 (1975). A. I. Zhmakin, A. A. Fursenko, “On the One Difference Scheme of the Through Computation,” Vych. Matem. Matem. Fiz. 20(4), 1021–1031 (1980). V. I. Kopchenov, A. N. Kraiko, “Monotonous Difference Scheme of the Second Order for Hyperbolic Systems with Two Independent Variables,” Vych. Matem. Matem. Fiz. 23(4), 848–859 (1980). P. Colella, P. R. Woodward, “The Piecewise Parabolic Method (Ppm) for Gas-Dynamical Simulations,” J. Comput. Physics 54, 174–201 (1984). A. Harten, B. Engqist, S. Osher, and S. Chakravarthy, “Uniformly High Order Accurate Essentially Non-Oscillatiry Schemes III,” J. Comput. Phys. 71, 231–303 (1987). K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Construction of Monotonous Difference Scheme of the Increased Order of Approximation for Systems of the Equations of Hyperbolic Type,” Mathematical Modeling, 1(5), 95–120 (1989). B. Cockburn and C. W. Shu, “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems,” J. Scientific Computing 16(3), 173–261 (2001). X. D. Liu, S. Osher, and T. Chan, “Weighted Essentially Non-Oscillatory Schemes,” J. Comp. Phys., 115, 200–212 (1994). V. V. Nikishin, I. V. Popov, V. F. Tishkin, A. P. Favorskii, “Difference Schemes of Three-Dimensional Gas Dynamics For Problems on the Development of Instability of Richtmayer-Meshkov,” Matem. model. 7(5) (1995). A. Iserles, “Generalized Leapfrog Methods,” IMA J. of Numerical Analysis 6(3), 381–392 (1986). A. A. Samarskii, V. M. Goloviznin, “Difference Approximation of the Convective Transport with Spatial Splitting of a Time-Derivative,” Matem. Model. 10(1), 86–100 (1998). A. A. Samarskii, V. M. Goloviznin, “Some Properties of Difference Schemes ‘cabaret’,” Matem. Model. 10(1), 101–116 (1998). P. L. Roe, “Linear Bicharacteristic Schemes Without Dissipation,” SISC 9, 1405–1427 (1998). Q. H. Tran and B. Scheurer, “High-Order Monotonicity-Preserving Compact Schemes for Linear Scalar Advection on 2-D Irregular Meshes,” J. Comp. Phys. 175,Issue 2, 454–486 (2002). V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-Characteristic Method of the Numerical Solution of One-Dimensional Equations of Gas Dynamicsin Euler Variables,” Matem. Model. 15(9), 29–48 (2003). V. M. Goloviznin, “Balance-Characteristic Method of the Numerical Solution of One-Dimensional Equations of Gas Dynamicsin Euler Variables,” Matem. Model. 18(11), 14–30 (2006). S. A. Karabasov and V. M. Goloviznin, “New Efficient High-Resolution Method for Nonlinear Problems in Aeroacoustics,” AIAA Journal 45(12), 2861–2871 (2007). V. M. Goloviznin, V. N. Semenov, I. A. Korortkin, and S. A. Karabasov, “A Novel Computational Method for Modelling Stochastic Advection in Heterogeneous Media. Transport in Porous Media,” Springer Netherlands 66(3), 439–456 (2007). S. A. Karabasov, P. S. Berloff, and V. M. Goloviznin, “CABARET in the Ocean Gyres,” J. Ocean Model. 30, 155–168 (2009). T. Colonius and S. K. Lele, “Computational Aeroacoustics: Progress on Nonlinear Problems of Sound Generation,” Progress in Aerospace Sciences 40, 345–416 (2004). A. J. Robert, “The Integration of a Low-Order Spectral Form of the Primitive Meteorological Equations,” J. Met. Soc. Japan 44(5), 237–245 (1966). R. Asselin, “Frequency Filter for Time Integrations,” Mon. Wea. Rev. 100, 487–490 (1972). S. K. Godunov, A. V. Zabrodin, etc., Numerical Solution of Multivariate Problems of Gas Dynamics (Nauka, Moscow, 1976). S. Osher, S. Chakravarty, “High Resolution Schemes and Entropy Condition,” SIAM J. Numer. Anal. 21(5), 955–984 (1984). P. L. Roe, “Characteristic Based Schemes for the Euler Equations,” Annual. Rev. Fluid. Mech. 18, 337–365 (1986). E. Toro, Rieman Solvers and Numerical Methods for Fluid Dynamics (Heidelberg: Springer, Berlin, 1997). R. Donat R. and A. Marquina, “Capturing Shock Reflections: An Improved Flux Formula,” Journal of Computational Physics 25, 42–58 (1996). H. Tang H. and T. Liu, “A Note on the Conservative Schemes for the Euler Equations,” Journal of Computational Physics 218, 451–459 (2006). A. V. Safronov, “Method of the Stabilization of Grid-characteristic Schemes for the Equations of Gas Dynamics,” Vych. Metody Program. 8, 6–9 (2007). T. G. Elizarova, E. V. Shil’nikov, “Possibilities of a Quasi Gas-dynamics Algorithm for Numerical Modeling of Nonviscous Gas Currents,” Vych. Matem. Matem. Fizika 49(3), 549–566 (2009). M. Van Dyke, Perturbation Methods in Fluid Mechanics (Parabolic Press, 1975). S. A. Karabasov and T. P. Hynes, “A Method for Solving Compressible Flow Equations in an Unsteady Free Steam,” Proc. IME vol. 220, Part C: J. Mechanical Engineering Science, No. 2, 185–202 (2006). R. Hixon, Evaluation of a High-Accuracy MacCormack-Type Scheme Using Benchmark Problems (NASA Contractor Report 202324, ICOMP-97-03). T. Colonius, S. K. Lele, and P. Moin, “The Scattering of Sound Waves by a Vortex: Numerical Simulations and Analytical Solutions,” J. Fluid Mech. 260, 271–298 (1994). P. Tabeling, Two-Dimensional Turbulence: A Physicist Approach (Physics Report, No. 362), pp. 1–62 (2002). I. V. Belyaev and V. F. Kopiev, On Sound Scattering by a Rankine Vortex (AIAA paper 2007-3421). L. E. Kinsler, A. R. Frey, A. B. Coppensand, J. V. Sanders, Fundamentals of Acoustics (Wiley & Sons Inc., 2000). P. G. Tucker and S. A. Karabasov, “Unstructured Grid Solution Approach for Eikonal Equation with Acoustics in Mind,” International Journal of Aeroacoustics 8, No. 6, 535–554 (2009). P. M. Georges, “Acoustic Ray Paths Through a Model Vortex with A Viscous Core,” J. Acoust. Soc. of America 51(1) (Part 2), 206–209 (1972). J. C. McWilliams, Fundamentals of Geophysical Fluid Dynamics (Cambridge University Press, 2006). W. Holland, “The Role of Mesoscale Eddies in the General Circulation of the Ocean—Numerical Experiments Using a Wind-Driven Quasigeostrophic Model,” J. Phys. Oceanogr. 8, 363–392 (1978). P. Berloff, A. Hogg, and W. Dewar, “The Turbulent Oscillator: A Mechanism of Low-frequency Variability of the Wind-Driven Ocean Gyres,” J. Phys. Oceanogr. 37, 2363–2386 (2007). J. McWilliams, “A Note on a Consistent Quasigeostrophic Model in a Multiply Connected Domain,” Dyn. Atmos. Oceans 1, 427–441 (1997). A. Arakawa, “Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow. Part I,” J. Comput. Phys. l, 119–143 (1966).